PASsAIC

Rolling Mill Co.

PATERSON, N. J.

STRUCTURAL
STEEL \& IRON.
\%
1900

Edworvantwithle
Do Otis Elivator Empany
${ }^{*} \% B^{\prime}$ way, M. y.
5/155/1900

Digitized by the Internet Archive in 2010 with funding from
 Lyrasis Members and Sloan Foundation

A MANUAL

OF
USEFUL INFORMATION AND TABLES APPERTAINING TO THE USE OF

STRUCTURAL STEEL,

 AS MANUFACTURED BY
THE PASSAIC ROLLING MILL CO.,

(NEW YORK OFFICE, 45 BROADWAY.) (BOSTON OFFICE, 31 STATE ST.)

FOR ENGINEERS, ARCHITECTS AND BUILDERS.

BY
GEO. H. BLAKELEY, C. E. M. AM. SOC. C. E.
1900.

Entered according to Act of Congress, in the year 1900, by THE PASSAIC ROLLING MILL CO., in the Office of the Librarian of Congress, at Washington.

Watts cooke, Pres.
W. O. FAYERWEATHER, Vice-Pres. and Treas.
J. K. COOKE, Sup't.
A. C. FAIRCHILD, Sec'y.
J. B. COOKE, Ass't Sec'y.
G. H. BLAKELEY, Chf. Eng

THE

PASSAIC ROLLING MILL CO., PATERSON, NEW JERSEY, MANUFACTURERS OF

OPEN HEARTH STRUCTURAL STEEL AND HIGH GRADE IRON.

BEAMS, CHANNELS, ANGLES, TEES, Z BARS, PLATES MERCHANT BARS.

DESIGNERS, MANUFACTURERS AND CONTRACTORS FOR
ALL KINDS OF STEEL AND IRON WORK FOR
BRIDGES AND BUILDINGS,
ROOFS, POWER STA-
TIONS, TRAIN SHEDS, RAILWAY AND HIGHWAY BRIDGES AND VIADUCTS, gTANDARD RAILWAY TURNTABLES, EYE BAR8, BUCKLE PLATES, SLEEVE NUTS, RIVETS,

AND STRUCTURAL STEEL WORK OF ALL DESCRIPTIONS.

\%

PLANS AND SPECIFICATIONS FURNISHED ON APPLICATION.
$\%$
NEW YORK OFFICE, 45 BROADWAY. BOSTON OFFICE, 31 STATE ST.

PREFACE.

This manual is a new work throughout. It is intended to supply such special information and tables as, it was thought, would prove of value and service to those who are engaged in the design of structural steel work in general, and the patrons of the publishers, The Passaic Rolling Mill Co., in particular.

The tables, with a few exceptions, were computed expressly for this work, and many of them are original in both matter and form.
The author hopes that they will be found to possess the qualities of accuracy and reliability.

Such of the tables as were not calculated for this work were obtained from works of presumably independent origin, which were compared for the detection of errors.

The tables of the weights and ultimate strengths of materials have been compiled by comparison of all the available data on the subject.

No attempt has been made to encumber the work with abridgments of mathematical tables, as such tables, to be of value, must be very extended and complete. Only such matter is given as the author has found to be of service in his own practice.

TABLE OF CONTENTS.

Page.
Shapes Manufactured by Passaic Rolling 6-37
Constructional Details $38-52$
Properties of Passaic Structural Shapes. $53-71$
Transverse Strength of Passaic Structural Shapes 72-93
Beam Girders 94-99
Strength and Deflection of Beams 100-111
Moments of Inertia of Usual Sections 112-113
Fireproof Construction 114-118
Building Laws 119
Spacing of I Beams for Floors 120-133
Riveted Girders 134-143
Suddenly Applied Loads 144
Lintel.s 145-147
Columing, Properties and Safe Loads 148-206
Foundations 207-213
Wind Bracing 214-215
Wooden Beams 216-220
Wooden Columns. $221-222$
Roofs $223-230$
Bridge Trusses 231-243
Passaic Standard Railroad Turntables. 244-245
Specifications for Structural Steel 246-248
Corrugated Iron 249-250
Rivets and Pins 251-256
Bolts and Nuts 257-259
Buckle Plates 260-261
Sleeve Nuts 262
Loop Rods 263
Eye Bars and Pins 264-265
Clevises 266
Linear Expansion by Heat. 267
Areas and Weights of Bars, Flats and Plates 268-281
Miscellaneous Tables 282-294
Ultimate Strengths of Materials. 295-298
Weights of Various Substances 299-304
Mensuration ; Areas and Circumferences of Circles. 305-309
Weights and Measures $310-317$

EXPLANATORY NOTES.

All weights given are for steel, and are per lineal foot of the section.

The manner in which the weights of various sections are increased is illustrated on page 34 .

For channels and \mathbf{I} beams, the enlargement of the section adds an equal amount to the thickness of the web and the width of the flanges. Lithograph sections are given for the principal weights of beams and channels. The dimensions of other weights of beams and channels can be obtained from the tables of weights and dimensions of \mathbf{I} beams and channels, pages 35 and 36 .

The effect of spreading the rolls, to increase the thickness of angles, slightly increases the length of the legs. Where the thickness is rolled in finishing grooves, the exact length of the legs is maintained. The finishing grooves for angles are given in the table on page 37. Intermediate and thicker sections have slightly increased length of legs.
\mathbf{Z} bars are increased in thickness in the same manner as angles. The dimensions of the various thicknesses of \mathbf{Z} bars are given in the tables of the weights and properties of \mathbf{Z} bars.

T shapes do not admit of any variation, and can only be rolled to the weights given.

Beams, Channels, and \mathbf{Z} bars are rolled only of steel. Universal Mill Plates and Angles are rolled of steel, but can be rolled of iron by special arrangement. \mathbf{T} shapes can be rolled of steel or iron. Merchant Bars can be rolled either of steel or iron.

In ordering sections, the weight or thickness wanted must be designated, but not both.

Unless stated to the contrary, all tables are for steel sections, as steel is now almost exclusively used for all structural purposes.

Unless otherwise arranged, all structural material will be cut to lengths with an extreme variation not exceeding $3 / 4$ of an inch.

SHAPES

MANUFACTURED BY
THE PASSAIC ROLLING MILL CO., PATERSON, NEW JERSEY.

6 THE PASSAIC ROLLING MILL COMPANY. 90 LBS. Pr. FT. STEEL. BEAMS

75 Lbs. Pr. Ft. STEEL BEAMS

75 LBS. PR. FT. STEEL BEAMS

65 LBS. PR. Ft. STEEL BEAMS

STEEL BEAMS

75 LBS. PR. FT.

STEEL BEAMS

60 LBS. PR. FT.

For Additional Weights See Page 35.

15 LBS. PR. FT.

STEEL BEAMS

10 LBS. PR. FT. 7.5 LBS.PR.FT. 6 LBS. PR. FT

STEEL CHANNELS

33 TO 50 LBS. PR. FT

For Intermediate Weights See Page ${ }_{3} 6$.

STEEL CHANNELS

16 TO 21 Lbs. Pr. FT.

For Intermediate Weights See Page ${ }_{3} 6$.

13 TO 17 LBS. PR. FT.

13 TO 15 LBS. Pr. FT.

10 TO 12 LBS. PR. FT.

STEEL CHANNELS

13 TO 17 LBS. PR. FT.
9 TO 12 Lbs.PR.FT.
$\underbrace{-0.38^{\prime \prime}}_{0}$
 For Intermediate Weigh

12 TO 15 LBS. PR. FT.
0.20 Oft 8 TO 10 LBS. PR. FT.

STEEL CHANNELS

9 TO 12 LBS. PR. FT.

8 TO 10 LBS.PR.FT.

6 TO 8 LBS.PR.FT.

5 to 7 LbS. PR. FT.

For Intermediate Weights See Page ${ }_{3} 6$.

UNEQUAL TEES STEEL OR IRON

UNEQUAL TEES STEEL OR IRON

UNEQUAL TEES STEEL OR IRON

5.7 Lbs. Pr. Ft.

3.I Les. Pr. Ft. .

EQUAL ANGLES STEEL OR IRON

 $6^{\prime \prime} \times 6^{\prime \prime} \times \frac{3^{\prime \prime}}{8}$ to $\frac{7}{8}$ " 14.8 т 034.0 L 38. PR FT.
$\frac{3^{\prime \prime}}{4} \times \frac{3^{\prime \prime}}{4} \times \frac{1^{\prime \prime}}{8} 0.61$ LBS. PR. FT.

UNEQUAL ANGLES STEEL OR IRON

 $6^{\prime \prime} \times 4^{\prime \prime} \times{ }_{8}^{3 \prime \prime}$ TO ${ }_{8}^{7 " \prime} 12.3$ TO 28.4 LBS. PR. FT.
$3^{\prime \prime} \times 22_{2}^{\prime \prime \prime} \times \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ TO $\frac{9^{\prime \prime}}{16} 4.45$ TO 9.69 LBS. PR. FT.

$$
3^{\prime \prime} \times 2 \text { "x } \times \frac{1}{4} \text { "TO } \frac{1^{\prime \prime}}{2} 4.05 \text { T0 7.65 LBS PR. FT. }
$$

SQUARE ROOT ANGLES
$1_{i 6}^{1} \times \frac{11 " *}{16} \times \frac{1}{8}{ }^{\prime \prime} 0.7$ LBS. PR. FT. $\frac{7 " \prime}{8} \times \frac{1}{2} \times \frac{1^{\prime \prime}}{8} 0.53$ LBS. PR. FT. Γ

STEEL Z BARS

STEEL Z BARS

LBS. PR. FT.

MISCELLANEOUS SHAPES
 IRON ONLY

 BEAD IRON.$31 / 2^{\prime \prime} \times 3 / 16^{\prime \prime}$ 2.5Lbs.Pr.FT.
$\sim^{\prime \prime \prime \times 1 / 4 "}$ 3.7LBS.PR.FT.
41/2x5/118
$5 x^{\prime \prime} 3 / 8^{\prime \prime}$

HAND RALL.

$21 / 4 \times 11 / 4 \times 1 / 4$

GROOVES.

ROUND EDGE FLATS.

HALF ROUND.

PICTURE FRAME.

SIZES OF PASSAIC BARS, STEEL OR IRON,

IN INCHES.

ROUNDS.

$\frac{3}{8}, \frac{7}{16}, \frac{1}{2}, \frac{9}{16}, \frac{5}{8}, \frac{11}{16}, \frac{3}{4}, \frac{13}{16}, \frac{7}{8}, \frac{15}{16}, 1,1 \frac{1}{16}, 1 \frac{1}{8}$, $1 \frac{3}{16}, 1 \frac{1}{4}, 1 \frac{5}{16}, 1 \frac{3}{8}, 1 \frac{1}{2}, 1 \frac{5}{8}, 1 \frac{3}{4}, 1 \frac{7}{8}, 2,2 \frac{1}{8}$, $2 \frac{1}{4}, 2 \frac{3}{8}, 2 \frac{1}{2}, 2 \frac{5}{8}, 2 \frac{3}{4}, 2 \frac{7}{8}, 3,3 \frac{1}{8}, 3 \frac{1}{4}$, $3 \frac{3}{8}, 3 \frac{1}{2}, 3 \frac{5}{8}, 3 \frac{3}{4}, 3 \frac{7}{8}, 4$, $4 \frac{1}{4}, 4 \frac{1}{2}, 4 \frac{3}{4}, 5$.

SQUARES.

$\frac{3}{8}, \frac{7}{16}, \frac{1}{2}, \frac{9}{16}, \frac{5}{8}, \frac{11}{16}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \mathbf{1}, 1 \frac{1}{8}, 1 \frac{1}{4}, 1 \frac{3}{8}, 1 \frac{1}{2}$, $1 \frac{5}{8}, 1 \frac{3}{4}, 1 \frac{7}{8}, 2,2 \frac{1}{4}, 2 \frac{1}{2}, 2 \frac{3}{4}, 3,3 \frac{1}{4}, 3 \frac{1}{2}, 4$.

HALF-ROUNDS.

$\frac{3}{8}, \frac{7}{16}, \frac{1}{2}, \frac{9}{16}, \frac{5}{8}, \frac{11}{16}, \frac{3}{4}, \frac{13}{16}, \frac{7}{8}, \frac{15}{16}, 1,1 \frac{1}{8}$, $1 \frac{1}{4}, 1_{\frac{3}{8}}, 1 \frac{1}{2}, 1 \frac{5}{8}, 1 \frac{3}{4}, 2,2 \frac{1}{2}, 3,3 \frac{1}{2}$.

HEXAGONS.

$\frac{7}{16}, \frac{1}{2}, \frac{5}{8}, \frac{11}{16}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, 1,1 \frac{1}{16}, 1 \frac{1}{8}, 1 \frac{1}{4}$.

ROUND EDGE FLATS.

$2 \frac{1}{2} \times \frac{3}{4}, 2 \frac{1}{2} \times \frac{7}{8}, 2 \frac{3}{4} \times \frac{3}{4}, 2 \frac{3}{4} \times \frac{7}{8}, 3 \times \frac{7}{8}, 4 \times \frac{7}{8}, 4 \times 1$.
FLATS.

Width.	Thickness.		Width.	Thickness.		Width.	Thickness.	
	Min.	Max.		Min.	Max.		Min.	Max.
			$1 \frac{3}{4}$					
$\frac{3}{4}$	$\frac{8}{8}$	$\frac{5}{8}$	2	-	$1{ }^{17}$	4_{4}^{1+}	4	${ }_{3}{ }_{3}^{3}$
$\frac{7}{8}$	${ }_{8}^{8}$	$\frac{3}{4}$	2^{1}	$\frac{1}{4}$	2	$4 \frac{1}{4}$ $4 \frac{1}{2}$ 	$\frac{1}{4}$	${ }_{3}^{3}$
1	$\frac{1}{8}$	$\frac{7}{8}$	$2{ }^{\frac{1}{2}}$	$\frac{1}{4}$	$2{ }^{1}$	5^{4}	$\frac{1}{4}$	2
$1 \frac{1}{8}$	${ }^{\frac{3}{8}}$	1	$2{ }^{3}$	$\frac{1}{4}$	$2{ }^{1}$	${ }_{5}$	${ }_{3}^{4}$	$2{ }^{2}$
$1{ }^{\frac{1}{4}}$	$\frac{1}{8}$	1	3	$\frac{1}{4}$	$2{ }^{3}$	${ }_{6}$	$\frac{1}{4}$	2^{2}
$1{ }^{\frac{1}{2}}$	1	1	$3 \frac{1}{4}$	$\frac{1}{4}$	${ }^{1 \frac{5}{8}}$	7	${ }_{4}^{4}$	$1{ }_{1}{ }^{\frac{4}{6}}$
15	$\frac{1}{4}$	${ }^{7}$	$3 \frac{1}{2}$	$\frac{1}{4}$	3	8	4	$1 \frac{3}{4}$

PASSAIC UNIVERSAL MILL PLATES.

STEEL.

Universal mill plates can be rolled to any width between $6^{\prime \prime}$ and $24^{\prime \prime}$, varying in width by $\frac{1}{4}$, and to any specified thickness from $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ upward, varying by $1^{\frac{1}{6}}{ }^{\prime \prime}$, and to a maximum limit of length of 70 ft ., provided the total weight of the plate does not exceed 3,000 lbs.

EXTREME LENGTHS OF UNIVERSAL PLATES, IN FEET.

	THICKNESS, IN INCHES.							
	$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$	1
6	40	45	60	70	70	70	70	70
7	"	"	"	"	"	"	"	"
8	"	"	"	"	"	"	"	"
9	"	"	"	"	"	"	"	"
10	"	"	"	"	"	"	"	"
11	"	"	"	"	"	"	"	"
12	"	"	"	"	"	"	"	"
13	"	"	"	"	"	"	"	68
14	"	"	"	"	"	"	"	63
15	"	"	"	"	"	"	67	59
16	"	"	"	"	"	"	63	55
17	"	"	"	"	"	69	59	52
18	"	"	"	"	"	64	56	48
19	"	"	"	"	"	62	53	46
20	"	"	"	"	"	59	50	44
21	"	"	"	"	67	56	48	42
22	"	"	"	"	64	52	45	40
23	"	"	"	"	60	50	44	38
24	"	"	"	"	58	48	42	36

METHOD OF INCREASING SECTIONAL AREAS

Fig. 1.

MINIMUM．MAXIMUM AND INTERMEDIATE WEIGHTS AND DIMENSIONS OF PASSAIC STEEL I BEAMS．

	Weight per foot，in lbs．		Width of Flanges， in inches．		Thickness of Web， in inches．			Intermediate Weights，lbs． per foot．
	Min．	Max．	Min．	Max．	Min．	Max．		
20	90		6.75		0.78			
20	80	85	6.38	6.46	0.69	0.77	． 015	
20	65	75	6.00	6.16	0.50	0.66	． 015	70
18	75	80	6.55	6.63	0.62	0.70	． 016	
18	70		6.37		0.65		． 016	
18	55	65	6.00	6.17	0.47	0.64	． 016	60
15	60	80	6.00	6.39	0.52	0.91	． 020	65， $70 \& 75$
15	50	55	5.75	5.85	0.45	0.55	． 020	
15	42	45	5.50	5.58	0.40	0.48	． 020	
12	55	65	6.00	6.25	0.63	0.88	． 025	60
12	40	50	5.50	5.75	0.39	0.64	． 025	45
12	312	35	5.13	5.21	0.35	0.43	． 025	
10	33	40	5.00	5.21	0.37	0.58	． 029	35
10	25	30	4.75	4.89	0.31	0.45	． 029	27
9	27	33	4.75	4.95	0.31	0.51	． 033	30
9	21	25	4.50	4.63	0.27	0.40	． 033	$23 \frac{1}{3}$
8	22	27	4.38	4.56	0.29	0.48	． 037	25
8	18	20	4.13	4.20	0.25	0.32	． 037	
7	20	22	4.09	4.17	0.28	0.36	． 042	
7	15	171	3.88	3.98	0.23	0.34	． 042	
6	15	20	3.52	3.77	0.25	0.50	． 049	$17 \frac{1}{2}$
6	12	14	3.38	3.48	0.22	0.32	． 049	13
5	13	15	3.13	3.25	0.26	0.38	． 059	
5	$9{ }_{4}^{3}$	12	3.00	3.12	0.21	0.33	． 059	
4	$7 \frac{1}{2}$	10	2.50	2.69	0.20	0.39	． 074	$8 \& 9$
4	6		2.19		0.18		． 074	

Weights in heavy－faced type are constantly kept in stock．Other weights are rolled ONLY ON ORDER．

MINIMUM，MAXIMUM AND INTERMEDIATE WEIGHTS AND DIMENSIONS OF PASSAIC STEEL CHANNELS．								
	Weight per foot，in lbs．		Width of Flanges， in inches．		Thickness of Web，in inches．			Inter－ mediate Weights， lbs． per foot．
	Min．	Max．	Min．	Max．	Min．	Max．		
15	40	50	3.52	3.71	． 54	． 73	． 020	45
15	33	35	3.38	3.42	． 40	． 44	． 020	
12	27	35	3.13	3.33	． 38	． 58	． 025	30 \＆33
12	20	25	2.88	3.00	． 28	． 40	． 025	23
10	20	30	2.88	3.17	． 31	． 60	． 029	25
10	15	18	2.60	2.67	． 25	． 32	． 029	17
9	16	21	2.56	2.73	． 28	． 45	． 033	18
9	13	15	2.36	2.43	． 23	． 30	． 033	14
8	13	17	2.22	2.37	． 25	． 40	． 037	15
8	10	12	2.08	2.15	． 20	． 27	． 037	11
7	13	17	2.22	2.39	． 28	． 45	． 042	15
7	9	12	2.00	2.13	． 20	． 33	． 042	10
6	17	20	2.41	2.56	． 38	． 53	． 049	18
6	12	15	2.19	2.34	． 28	． 43	． 049	13
6	8	10	1.94	2.04	． 20	． 30	． 049	9
5	9	12	1.91	2.09	． 25	． 43	． 059	10
5	6	8	1.66	1.78	． 18	． 30	． 059	7
4	8	10	1.86	2.01	． 27	． 42	． 074	9
4	5	7	1.59	1.74	． 17	． 32	． 074	6

Weights in heavy－faced type are constantly kept in stock．Other weights are rolled ONLY ON ORDER．

SIZES OF FINISHING GROOVES FOR PASSAIC STEEL ANGLES.

ALL DIMENSIONS ARE GIVEN IN INCHES.

EQUAL LEGS.		UNEQUAL LEGS.	
Size.	Thickness.	Size.	Thickness.
6×6	$\frac{3}{8}$ and $\frac{11}{16}$	6×4	$\frac{3}{8}$ and $\frac{5}{8}$
5×5	$\frac{3}{8}$ and $\frac{5}{8}$	$5 \times 3 \frac{1}{2}$	$\frac{3}{8}$ and $\frac{5}{8}$
4×4	$\frac{5}{16}, \frac{7}{16}$ and $\frac{5}{8}$	5×3	$\frac{5}{16}, \frac{7}{16}$ and $\frac{9}{16}$
$3 \times \frac{1}{2} \times 3 \frac{1}{2}$	$\frac{5}{16}, \frac{7}{16}, \frac{1}{2}$ and $\frac{5}{8}$	$4 \frac{1}{2} \times 3$	$\frac{5}{16}, \frac{7}{16}$ and $\frac{5}{8}$
3×3	$\frac{1}{4}, \frac{5}{16}$ and $\frac{7}{16}$	$4 \times 3 \frac{1}{2}$	$\frac{5}{16}, \frac{7}{16}$ and $\frac{5}{8}$
$2 \frac{1}{2} \times 2 \frac{1}{2}$	$\frac{1}{4}, \frac{5}{16}$ and $\frac{7}{16}$	4×3	$\frac{5}{16}, \frac{7}{16}$ and $\frac{5}{8}$
$2 \frac{1}{4} \times 2 \frac{1}{4}$	$\frac{3}{16}, \frac{1}{4}$ and $\frac{3}{8}$	$3 \frac{1}{2} \times 3$	$\frac{5}{16}, \frac{3}{8}, \frac{1}{2}$ and $\frac{5}{8}$
2×2	$\frac{3}{16}, \frac{1}{4}$ and $\frac{3}{8}$	$3 \frac{1}{2} \times 2 \frac{1}{2}$	$\frac{1}{4}, \frac{3}{8}$ and $\frac{1}{2}$
$1 \frac{3}{4} \times 1 \frac{3}{4}$	$\frac{3}{16}, \frac{1}{4}$ and $\frac{3}{8}$	$3 \times 2 \frac{1}{2}$	$\frac{1}{4}, \frac{3}{8}$ and $\frac{1}{2}$
$1 \frac{1}{2} \times 1 \frac{1}{2}$	$\frac{3}{16}, \frac{7}{4}$ and $\frac{3}{8}$	3×2	$\frac{1}{4}, \frac{3}{8}$ and $\frac{1}{2}$
$1 \frac{1}{4} \times 1 \frac{1}{4}$	$\frac{1}{8}$ and $\frac{3}{16}$	$2 \frac{1}{2} \times 2$	$\frac{3}{16}$ and $\frac{5}{16}$
1×1	$\frac{1}{8}$ and $\frac{3}{16}$	$2 \frac{1}{4} \times 1 \frac{1}{2}$	$\frac{3}{16}$ and $\frac{5}{16}$
$\frac{7}{8} \times \frac{7}{8}$	$\frac{1}{8}$ and $\frac{3}{16}$	$2 \times 1 \frac{3}{4}$	$\frac{3}{16}$ and $\frac{5}{16}$
$\frac{3}{4} \times \frac{3}{4}$	$\frac{1}{8}$ and $\frac{3}{16}$	$1 \frac{3}{8} \times 1 \frac{1}{8}$	$\frac{1}{8}$ and $\frac{1}{4}$

When the angle is obtained from a finishing groove, the exact lengths of the legs are preserved; but for intermediate and greater thicknesses, the lengths of the legs are slightly increased. This increase of length amounts to about $\frac{1}{16}$ of an inch for each $\frac{1}{16}$ inch increase in thickness.

FIG. 4

FIG. 7

FIG. 8

BEAM PROTECTION.

GIRDER PROTECTION.
 HOLLOW BRICK SEGMENTAL ARCH.

COLUMN PROTECTION.

TILE ROOF CONSTRUCTION .

TILE CEILING CONSTRUCTION.

"EXCELSIOR"END CONSTRUCTION FLAT ARCH.

BUILT COLUMN SECTIONS

FIG.I

FIG. 4

FIG. 7

FIG.IO

FIG. 2

FIG. 5

FIG. 8

FIG.II

FIG. 3

FIG. 6

FIG. 9

FIG.I2

CHANNEL COLUMN

			ATOR ST ACING $=10^{\prime \prime} \mathrm{f}$ $=7^{\prime \prime} \mathrm{f}$ $=6^{\prime \prime} \mathrm{f}$	RS AN EEL B of Boi or $18^{\prime \prime}$ an or $15^{\prime \prime}$ B or $12^{\prime \prime}$ B	D BO BEAM TS， $20^{\prime \prime}$ Beams． Beams．	OLTS S． Beams	FOR	
	ignation Beam.		in inches， anges apart．	Weig with fla	hts，in po anges $1 / 4$	ounds， ＂apart．		
	$\begin{aligned} & \text { Weight } \\ & \text { in lbs. } \\ & \text { per foot. } \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \text { of } \\ & \text { Girder, } \\ & \mathbf{W} \end{aligned}$	Width of Sepa rator， \mathbf{S}	$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { Separator } \end{gathered}$	$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { Bolts. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Separator } \\ \text { and } \\ \text { Bolts. } \end{gathered}\right.$	$\begin{array}{r} 0 \\ 0 \end{array}$	
20	90	$13 \frac{3}{4}$	$6 \frac{1}{4}$	$22 \frac{1}{4}$	$4 \frac{1}{2}$	$26 \frac{3}{4}$	3.7	
20	80	13	6	$21 \frac{1}{4}$	4	$25 \frac{1}{4}$	3.7	
20	75	125	$5 \frac{3}{4}$	$20 \frac{1}{2}$	4	$24 \frac{1}{2}$	3.7	
20	65	$12 \frac{1}{4}$	$5 \frac{3}{4}$	$20 \frac{1}{2}$	$3 \frac{3}{4}$	$24 \frac{1}{4}$	3.7	$\stackrel{\square}{\square}$
18	80	$13 \frac{1}{2}$	$6 \frac{1}{8}$	20	$4 \frac{1}{2}$	$24 \frac{1}{2}$	3.3	8
18	70	13	6	1914	4 $\frac{1}{4}$	$23 \frac{1}{2}$	3.3	\％
18	65.	125	$5 \frac{3}{4}$	$18 \frac{1}{2}$	4	$22 \frac{1}{2}$	3.3	む
18	55	$12{ }^{\frac{1}{4}}$	$5 \frac{3}{4}$	1812	$3{ }^{3}$	$22 \frac{1}{4}$	3.3	
15	75	127	$5{ }^{\frac{3}{2}}$	124	4	$16 \frac{1}{\frac{1}{4}}$	2.4	．
15	65	$12 \frac{1}{2}$	53	$12 \frac{1}{4}$	4	$16{ }_{4}^{4}$	2.4	
15	60	$12 \frac{1}{4}$	53	$12 \frac{1}{4}$	4	$16 \frac{1}{4}$	2.4	¢i＊
15	50	$11 \frac{3}{4}$	$5 \frac{1}{2}$	113	$3 \frac{3}{4}$	$15 \frac{1}{2}$	2.4	\bigcirc
15	42	$11{ }^{\frac{1}{4}}$	$5 \frac{3}{8}$	$11^{\frac{1}{2}}$	$3{ }^{1}$	15	2.4	$\stackrel{\square}{2}$
12	50	$11 \frac{3}{4}$	$5 \frac{3}{8}$	$9{ }^{2}$	$3{ }^{3}$	13	2.0	
12	40	11_{4}^{1}	$5 \frac{3}{8}$	$9{ }^{\frac{1}{4}}$	$3{ }^{\frac{3}{4}}$	13	2.0	
12	$31 \frac{1}{2}$	$10 \frac{1}{2}$	5	$8 \frac{4}{4}$	$3 \frac{1}{2}$	$12 \frac{1}{4}$	2.0	
10	40	$10 \frac{5}{8}$	47	7	$1{ }^{\frac{3}{4}}$	$8 \frac{3}{4}$	1.5	
10	33	$10 \frac{1}{4}$	$4 \frac{7}{8}$	7	$1{ }^{3}$	$8{ }^{3}$	1.5	
10	30	$10{ }^{4}$	$4{ }^{\frac{5}{8}}$	$6{ }^{\frac{3}{4}}$	$1{ }^{3}$	$8 \frac{1}{2}$	1.5	
10	25	$9{ }_{4}^{3}$	45	$6{ }_{4}$	$1 \frac{3}{4}$	$8 \frac{1}{2}$	1.5	
9	27	$9{ }^{3}$	$4 \frac{5}{8}$	6	$1{ }^{1}$	$7 \frac{3}{4}$	1.4	$\stackrel{\sim}{\circ}$
9	$23 \frac{1}{3}$	$9{ }^{1}$	$4 \frac{1}{2}$	$5{ }^{3}$	$1{ }^{\frac{3}{4}}$	$7 \frac{1}{2}$	1.4	\cdots
9	21	$9{ }_{9}$	4 $\frac{1}{2}$	$5{ }^{\frac{3}{4}}$	$1{ }^{13}$	$7 \frac{1}{2}$	1.4	芽
8	22	9	$4 \frac{1}{4}$	5	${ }^{13}$	6^{3}	1.3	E
8	18	$8{ }^{81}$	$4 \frac{1}{8}$	$4{ }^{\frac{3}{4}}$	${ }_{1}^{11^{\frac{3}{3}}}$	6_{6}^{1}	1.3	．⿹\zh26灬
7	15	${ }_{8}^{81}$	${ }^{4 \frac{1}{8}}$	$4{ }_{4}^{4}$	${ }_{1}^{13}$	${ }_{5}^{6}$	1.1	$=$
6	15	$7 \frac{1}{4}$	${ }_{3}{ }^{\frac{1}{2}}$	3	${ }_{1}^{1}$	$4{ }_{4}^{4}$	1.0	cid
6	12	7	$3 \frac{3}{8}$	3	$1{ }^{\frac{3}{4}}$	$4 \frac{3}{4}$	1.0	Õ
5	13	$6 \frac{1}{2}$	$3{ }^{1}$	$2{ }^{\frac{1}{4}}$	$1{ }^{1}$	$3{ }_{4}^{4}$	0.9	
5	$9{ }^{3}$	$6 \frac{1}{4}$	3	2	$1{ }^{1}$	$3{ }^{1}$	0.9	
4	8	$5 \frac{1}{4}$	$2 \frac{1}{2}$	112	$1{ }^{\frac{1}{2}}$	3	0.7	
4	6	$4 \frac{5}{8}$	$2{ }_{4}^{1}$	$1{ }_{4}^{1}$	$1{ }_{2}^{1}$	$2{ }^{3}$	0.7	

STANDARD CONNECTION ANGLES.

The standard connection angles, for the principal sizes and weights of Passaic steel I beams, are illustrated on the following pages. These connections are designed on the basis of an allowable shearing strain of $9,000 \mathrm{lbs}$. per square inch, and a bearing strain of $18,000 \mathrm{lbs}$. per square inch on bolts. The number of bolts is dependent, in most instances, upon their bearing values on the webs of the beams.

The connections are proportioned to cover most cases occurring in ordinary practice. Where beams have short spans and are loaded to their full capacity, it may be found necessary to use connections having a greater number of bolts than is used in the standard connections. The minimum spans for which the standard connection angles may be used are given in the following table; and the approximate weights of the standard connections are also given.

Connection angles may be riveted to the beams, instead of being bolted, if so specified; but, unless ordered to the contrary, bolted connections are generally used.

MINIMUM SPANS

FOR WHICH STANDARD CONNECTIONS CAN BE USED.

Depth Beam, Inches	$\begin{gathered} \text { Weight } \\ \text { of } \\ \text { Beam, } \\ \text { Lbs. per } \\ \text { Foot. } \end{gathered}$	Minimum Span, in Feet.	Weight of one Connec- tion, Lbs.	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { Beam, } \\ & \text { Inches. } \end{aligned}$	Weight of Beam, Lbs. per Foot.	$\begin{gathered} \text { Minimum } \\ \text { Safe } \\ \text { Span, } \\ \text { in Feet. } \end{gathered}$	
20	90	20.5	35	10	40	12.0	181 ${ }^{\frac{1}{2}}$
"	80	18.0	"	"	33	11.5	
"	75	16.5	"	"	30	9.0	"
"	65	18.0	"	"	25	10.5	${ }^{\prime \prime}$
18	80	16.9	34	9	27	10.5	17
18	70	14.5	34	"	$23 \frac{1}{3}$	7.5	"
"	65	13.2	"	"	21	9.0	"
"	55	15.0	"	8	27	6.0	16
15	75	16.0	28	"	22	9.0	"
15	65	15.0	${ }^{\prime \prime}$	"	18	7.5	15
"	60	16.0	"	7	20	7.0	15
"	50	15.5	"	"	15	6.5	"
"	42	14.0	"	6	15	7.0	9
12	65	14.7	26	6	12	6.5	"
12	55	13.5	,	5	13	5.0	"
"	40	12.0	"	4	$9^{9 \frac{3}{1}}$	4.5 2.5	"
"	$31 \frac{1}{2}$	10.5	"	4	${ }_{6}{ }^{\text {2 }}$	2.5	,

STANDARD BEAM CONNECTIONS

All holes for $\frac{3}{4}$ " bolts or rivets.

$15^{\prime \prime}$
$12 "$

2 Angles $\cdot 4^{\prime \prime} \times 4^{\prime \prime} \times \frac{3^{\prime \prime}}{8} \times 1^{\prime}-0^{\prime \prime}$

2 Angles $6^{\prime \prime} \times 4^{\prime \prime} \times{ }^{3^{\prime \prime}} \times 9^{\prime \prime}$;

STANDARD BEAM CONNECTIONS.

All holes for $\frac{3^{\prime \prime}}{4}$ bolts or rivets.

2 Angles $6^{\prime \prime} \times 4^{\prime \prime} \times \frac{3_{8}^{\prime \prime}}{} \times 66_{2}^{1 \prime}$

2 Angles 6 " $\times 4^{\prime \prime} \times \frac{3^{3 \prime}}{} \times 3^{\prime \prime}$
$8^{\prime \prime}$

2 Angles $6^{\prime \prime} x 4^{\prime \prime \prime} x \frac{3^{3 \prime}}{} \times 5_{\frac{1}{2}}{ }^{\prime \prime}$

2 Angles $6^{\prime \prime} \times 4^{\prime \prime} \times{ }_{\frac{3}{3}}{ }^{\prime \prime} \times 6^{\prime \prime}$
$7{ }^{\prime \prime}$

$5^{\prime \prime}$

2 Angles $6^{\prime \prime} \times 4^{\prime \prime} \times \frac{3_{3}^{\prime \prime}}{} \times 3^{\prime \prime}$

STANDARD SPACING AND DIMENSIONS OF RIVET AND BOLT HOLES THROUGH FLANGES and connection angles of I beams.

Depth in inches.	Weight per ft., lbs.	Dia. of Bolt or Rivet, in inches.	$\stackrel{a}{\text { in ins. }}$	in ins.	$\begin{gathered} \text { Depth } \\ \text { in } \\ \text { inches. } \end{gathered}$	Weight per ft., lbs.	Dia. of Bolt or Rivet, in ins.	$\begin{gathered} \mathrm{a}, \\ \text { in ins. } \end{gathered}$	$\begin{gathered} \mathrm{b}, \\ \text { in ins. } \end{gathered}$
20	90	$\frac{3}{4}$	4	$5 \frac{3}{4}$	10	33	$\frac{3}{4}$	$2 \frac{3}{4}$	$5 \frac{3}{8}$
20	85	/1	$3 \frac{1}{2}$	$5 \frac{3}{4}$	10	30	"	$2 \frac{1}{2}$	51_{16}^{7}
20	80	/	$3 \frac{1}{2}$	$5 \frac{1}{1} \frac{1}{6}$	10	27	/1	$2 \frac{1}{2}$	$5 \frac{3}{8}$
20	75	"	$3 \frac{1}{2}$	$5 \frac{1}{16}$	10	25	/1	$2 \frac{1}{2}$	$5 \frac{5}{16}$
20	70	/	$3 \frac{1}{2}$	$5{ }^{\frac{9}{6}}$	9	33	"	$2 \frac{3}{4}$	$5 \frac{1}{2}$
20	65	/1	$3 \frac{1}{2}$	$5 \frac{1}{2}$	9	30	/	$2 \frac{3}{4}$	5_{16}^{7}
18	80	"	4	$5 \frac{1}{1} \frac{1}{6}$	9	27	/	$2 \frac{1}{2}$	$5 \frac{5}{16}$
18	75	"	4	$5 \frac{5}{8}$	9	25	/	$2 \frac{1}{2}$	$5 \frac{1}{8}$
18	70	"	$3 \frac{1}{2}$	$5 \frac{11}{16}$	9	$23 \frac{1}{3}$	/	$2 \frac{1}{2}$	$5 \frac{3}{8}$
18	65	"	$3 \frac{1}{2}$	$5 \frac{5}{8}$	9	$\stackrel{6}{2} 1$	/1	$2 \frac{1}{2}$	$5 \frac{1}{4}$
18	60	/	$3 \frac{1}{2}$	$5 \frac{9}{16}$	8	27	"	$2 \frac{1}{4}$	$5 \frac{1}{2}$
18	55	/	$3 \frac{1}{2}$	$5{ }_{1} \frac{7}{6}$	8	25	/1	$2 \frac{1}{4}$	$5 \frac{3}{8}$
15	75	"	$3 \frac{1}{2}$	$5 \frac{13}{16}$	8	22	/1	$2 \frac{1}{4}$	$5 \frac{5}{16}$
15	70	"	$3 \frac{1}{2}$	$5 \frac{3}{4}$	8	20	/1	$2 \frac{1}{4}$	$5 \frac{5}{16}$
15	65	/	$3 \frac{1}{2}$	5	8	18	"	$2 \frac{1}{4}$	$5 \frac{1}{4}$
15	60	/	$3 \frac{1}{2}$	$5 \frac{1}{2}$	7	22	$\frac{5}{8}$	$2 \frac{1}{4}$	$5 \frac{3}{8}$
15	55	/	$3 \frac{1}{4}$	$5{ }_{1} \frac{9}{6}$	7	20	/1	$2 \frac{1}{4}$	$5 \frac{1}{4}$
15	50	/	$3 \frac{1}{4}$	$5{ }_{1}{ }^{7}$	7	171	/	2	$5 \frac{5}{16}$
15	45	/	$3 \frac{1}{4}$	$5{ }_{1}^{7} 6$	7	15	//	2	$5 \frac{1}{4}$
15	42	/	$3 \frac{1}{4}$	$5 \frac{3}{8}$	6	20	"	2	$5 \frac{1}{2}$
12	65	/	$3 \frac{1}{2}$	$5 \frac{7}{8}$	6	$17 \frac{1}{2}$	"	2	$5 \frac{3}{8}$
12	60	"	$3 \frac{1}{2}$	$5 \frac{3}{4}$	6	15	"	2	$5 \frac{1}{4}$
12	55	"	$3 \frac{1}{4}$	$5 \frac{5}{8}$	6	12	/	13	$5 \frac{1}{4}$
12	50	"	$3 \frac{1}{4}$	$5 \frac{5}{8}$	5	15°	$\frac{1}{2}$	$1 \frac{3}{4}$	
12	45	"	$3 \frac{1}{4}$	$5 \frac{1}{2}$	5	13	"	$1 \frac{3}{4}$	$5 \frac{1}{4}$
12	40	"	$3 \frac{1}{4}$	$5 \frac{3}{8}$	5	12	/	$1 \frac{3}{4}$	$5 . \frac{5}{16}$
12	35	"	3	$5 \frac{7}{16}$	5	93	"	$1 \frac{1}{2}$	$5 \frac{1}{4}$
12	$31 \frac{1}{2}$	/	3	$5 \frac{3}{8}$	4	10	/	12	$5 \frac{3}{8}$
10	40	"	$2 \frac{3}{4}$	$5 \frac{9}{6}$	4	$7 \frac{1}{2}$	/	$1 \frac{1}{2}$	516 516
10	35	/	$2 \frac{3}{4}$	$5 \frac{7}{26}$	4	6	11	$1 \frac{1}{8}$	$5 \frac{3}{6}$

STANDARD SPACING AND DIMENSIONS OF RIVET AND BOLT HOLES THROUGH FLANGES AND CONNECTION ANGLES OF CHANNELS.

STANDARD CONNECTIONS TO CAST IRON COLUMNS.

Dimensions in inches.

Depth of Beam.	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{K}	Thick- ness of Lugs.	Holes cored
20	5	5	6	$10 \frac{1}{2}$	$1 \frac{1}{2}$	$1 \frac{1}{2}$	2	$1 \frac{1}{2}$	2	1	for $\frac{3}{4}$
18	4	5	6	$10 \frac{1}{2}$	$1 \frac{1}{2}$	$1 \frac{1}{2}$	2	$1 \frac{1}{2}$	2	1	bolts.
15	4	$3 \frac{1}{2}$	$5 \frac{1}{2}$	$9 \frac{1}{2}$	$1 \frac{1}{2}$	$1 \frac{1}{4}$	2	$1 \frac{1}{2}$	$1 \frac{3}{4}$	1	bol
12	3	3	$4 \frac{1}{2}$	$\mathbf{7} \frac{3}{4}$	$1 \frac{1}{4}$	$1 \frac{1}{4}$	2	$1 \frac{1}{2}$	$1 \frac{1}{2}$	1	

Depth of Beam.	A	B	C	D	E	F	G	H	K	Thick ness of Lugs.	Holes cored for $\frac{3}{4}{ }^{\prime \prime}$ bolts.
10	$3 \frac{1}{4}$	$3 \frac{1}{2}$	4	7	114	1	2	$1 \frac{1}{2}$	112	1	
9	3	3	4	7	1	1	2	$1 \frac{1}{2}$	$1 \frac{1}{2}$	1	
8	21	3	4	7	1	1	2	$1 \frac{1}{2}$	$1 \frac{1}{2}$	$\frac{3}{4}$	
7	$2 \frac{1}{4}$	$2 \frac{1}{2}$	4	7	1	1	2	$1 \frac{1}{2}$	$1 \frac{1}{4}$	${ }_{3}^{4}$	

Note. - If the shelf on which the beam rests is cast square to the column, then when the beam deflects the load would be brought on the extreme outer edge of the bracket. To avoid this, the shelf should be sloped downward, away from the column, with a bevel of $1 / 8^{\prime \prime}$ per foot.

BEARING PLATES.

Steel bearing plates are used to distribute the pressure under the ends of steel beams resting on walls, and must be of a sufficient size so that the pressure per square inch on the wall shall not exceed
On best brickwork, in cement mortar.. 200 lbs.
On good brickwork, in cement and lime mortar. . 150
On common brickwork, in lime mortar $\ldots100 "$

For good brickwork laid in cement and lime mortar, capable of sustaining a load of 150 lbs . per square inch, the following sizes of bearing plates will, in general, suffice for ordinary spans:

Size of Beam.	Bearing	Bearing Plates.			Safe End Reaction in Tons.
		Length.	Width.	Thickness.	
$20^{\prime \prime}$ and $18^{\prime \prime}$	$16^{\prime \prime}$	$16^{\prime \prime}$	$16^{\prime \prime}$	$7 / 8^{\prime \prime}$	19.2
15"	$12^{\prime \prime}$	$12^{\prime \prime}$	14"	$3 /{ }^{\prime \prime}$	12.6
$12^{\prime \prime}$	$12^{\prime \prime}$	$12^{\prime \prime}$	$12^{\prime \prime}$	$58^{\prime \prime}$	10.8
$10^{\prime \prime}$ and $9^{\prime \prime}$	$10^{\prime \prime}$	$10^{\prime \prime}$	$10^{\prime \prime}$	$1 /{ }^{\prime \prime}$	7.5
$8^{\prime \prime}$ and $7^{\prime \prime}$	$8^{\prime \prime}$	$8^{\prime \prime}$	$8{ }^{\prime \prime}$	1/2"	4.8
$6^{\prime \prime}$	$6^{\prime \prime}$	$6^{\prime \prime}$	$8^{\prime \prime}$	1/211	3.6

For special cases the size of the bearing plate must be determined and then its thickness obtained by the following formula, in which
$\mathrm{t}=$ thickness of plate, in inches.
$\mathrm{w}=$ width of plate perpendicular to axis of beam, in inches.
$\mathrm{b}=$ width of flange of beam, in inches.
$\mathrm{p}=$ allowable pressure, lbs. per square inch on wall.
$\mathrm{s}=$ allowable fiber strain in plate, lbs. per sq. in.

$$
\mathrm{t}=\mathrm{t} / 2(\mathrm{w}-\mathrm{b}) \sqrt{\frac{1}{\frac{3 \mathrm{p}}{s}}}
$$

For an allowable strain of $16,000 \mathrm{lbs}$. per sq. in., the thickness of the plate required can be obtained for various pressures by multiplying $1 / 2(\mathrm{w}-\mathrm{b})$, or the cantilever projection of the plate, by the following coefficients:
Pressure, lbs. per sq. in. $\begin{array}{lllllll}100 & 150 & 200 & 250 & 300 & 350\end{array}$ Coefficient $0.1370 .168 \quad 0.1940 .2160 .2370 .256$
A template of bluestone, or other hard quality of stone, is frequently necessary, instead of a steel bearing plate, at the wall ends of steel beams. Where the pressure is great, as at the ends of girders, both steel bearing plates and stone templates should be used, the size of the bearing plate being sufficient to limit the pressure between it and the bluestone template to 300 lbs . per square inch. The size of the stone template must be sufficient to limit its pressure on the brickwork to the proper pressure as given above. The stone template should not project beyond the bearing plate, in any direction, more than $3 / 4$ of the thickness of the stone.

TIE RODS.

Tie rods are generally $3 / 4^{\prime \prime}$ diameter and should be placed $3^{\prime \prime}$ above the bottom of the beams in order to be as near as possible to the line of thrust of the arch. The proper spacing is determined by two considerations; the net area of the rod, at 15,000 lbs. per square inch, must be adequate to resist the thrust of the arches, and also the lateral strains produced in the beams or channels by the thrust of the arches must not be excessive.

Let, $t=$ thrust of arch, per lineal foot, in lbs.
$r=$ effective rise of arch, in inches. (For flat arches r is $2^{\prime \prime}$ less than the thickness of arch).
$l=$ span of arch, in feet.
$z=$ load per square foot, in lbs.
$a=$ net area of tie rod. (For $3 / 4^{\prime \prime}$ rod, $a=0.3 ; 7 / 8^{\prime \prime}$ rod, $a=0.42$; and $\mathrm{r}^{\prime \prime}$ rod, $a=0.55$).
$d=$ distance between tie rods, in feet.
Then, $t=\frac{3 w l^{2}}{2 r} ;(1) \quad$ and, $\quad d=\frac{10,000 a r}{w l^{2}}$;
For $3 / /^{\prime \prime}$ tie rods when $w=150 \mathrm{lbs} ., d=20 r \div l^{2}$.
In general it will be found necessary to decrease this distance between tie rods, found by the above formula, in order that the lateral strains produced by the thrust of the arches on the beams or channels may not be excessive.

Let, $I^{\prime}=$ moment of inertia of beam or channel, axis coincident with or parallel to web.
$f=$ width of flange, in inches.
$g^{g}=$ distance of center of gravity from back of channel, inches.
$S=$ strain produced by flexure, lbs. per square inch.
The beams or channels being considered as continuous, then :

For Beams,

$$
\begin{array}{ll}
S=\frac{t d^{2} f}{2 I^{\prime}} ;(3) & S=\frac{t d^{2}(f-g)}{I^{\prime}} ;(5) \\
d=\sqrt{\frac{2 S I^{\prime}}{t f}} ;(4) & d=\sqrt{\frac{S I^{\prime}}{(f-g)}} ; \tag{6}
\end{array}
$$

For Channels,

For the interior beams of a floor, " t " in these formulæ may be taken for the live load only and the sum of the strains produced by lateral thrust and the full vertical loading should not exceed $20,000 \mathrm{lbs}$. per square inch. As the vertical loading is usually, in building construction, allowed to produce a strain of 16,000 lbs. the lateral strain must therefore be limited to 4,000 lbs. per square inch, and in this case S in equation (4) will be 4,000 .
For exterior arches, along walls, or around openings, " t " must be taken for the full live and dead load and the sum of the strains produced by lateral thrust and vertical loading should not exceed 18,000 lbs. per square inch. For wall channels as ordinarily designed it will be found necessary to use a greater number of tie rods than for interior beams, or it may be advisable to use a beam for a skewback instead of a channel.
If equations (4) or (6) give greater values of d than equation (2), the value given by the latter is to be used.

EXPLANATION OF TABLES

OF THE PROPERTIES OF PASSAIC STRUCTURAL SHAPES.

The properties of \mathbf{I} beams are calculated for the standard weights of beams usually rolled. The increase of the coefficients of strength for 1 lb . increase in the weights of the beams is given, by means of which the coefficients of strength for intermediate or heavier weights of beams can be obtained, by multiplying the increase of the coefficient for I lb . by the number of lbs. the section is heavier than the section given in the table.

The properties of channels are given for the standard weights of each section. The increase of the coefficient of strength is given for I lb . increase in the weights of the channels. The coefficient of strength for intermediate or heavier weights of channels can be obtained by increasing the coefficient of strength given for the lighter weight; such increase being obtained by multiplying the increase of the coefficient for I lb. by the number of lbs. the section is heavier than the lighter section given.

The properties of Tees are calculated for all weights rolled. The horizontal portion of the \mathbf{T} is called the flange, and the vertical portion the stem. For the position of the neutral axis parallel to the flange, there are two values of the section modulus, and the smaller only is given, as the fiber strain calculated from it gives the greater strain in the extreme fibers.

The properties of angles are calculated for the minimum and maximum weights of each size of angle. The section modulus and the coefficient of strength for weights intermediate between the minimum and maximum are approximately proportional to the weights. There are two values of the section modulus for each position of the neutral axis, since the distance between the neutrail axis and the extreme fiber is greater on one side of the axis than on the other side. The section modulus given in the table is the smaller of these two values.

The properties of \mathbf{Z} bars are calculated for thicknesses varying by $\frac{1}{16}{ }^{\prime \prime}$ for each size.

The coefficients of strength are calculated for a fiber strain of $16,000 \mathrm{lbs}$. per square inch, for all shapes. This corresponds to a strain of $\frac{1}{2}$ the elastic limit of the structural steel ordinarily used, and provides an ample margin of safety for building construction or other purposes where the loads are quiescent or nearly so. If moving loads are to be provided for, the fiber strain should not exceed $\mathbf{1 2}, 000 \mathrm{lbs}$. per square inch. The coefficients of strength for \mathbf{I} beams and channels are also calculated for a fiber strain of $12,000 \mathrm{lbs}$. per square inch. If a load is suddenly applied, it produces an effect double that produced by the same load in a quiescent state, so that where structures are subjected to the sudden application of loads, as in railroad bridges, still smaller fiber strains than those given in the tables must be used. As the coefficients of strength are proportional to the fiber strains assumed, they can readily be determined for any assumed fiber strain by proportion. Thus, the coefficient of strength for a fiber strain of $8,000 \mathrm{lbs}$. per square inch, will be $\frac{1}{2}$ the coefficient for 16,000 lbs. fiber strain.

The coefficients of strength given in the tables furnish an easy means of determining the safe uniformly distributed load on any shape, by simply dividing the coefficient, given for the shape, by the length of the span, in feet; the quotient being the safe uniformly distributed load in lbs. Thus, if it is desired to find the safe uniformly distributed load on a $12^{\prime \prime} \times 40$ lb . I beam on a span of 20 ft ., allowing a maximum fiber strain of $\mathbf{1 6 , 0 0 0} \mathrm{lbs}$. per square inch, it is only necessary to divide the coefficient, 500,100 , given in the table of properties, by 20 ; the quotient being 25,005 , which is the safe load required, in lbs., including the weight of the beam itself. If a section is to be selected to sustain a certain load, for a given length of span, it will only be necessary to obtain the coefficient of strength required and refer to the tables for the section having a coefficient of that value. The coefficient required is obtained by multiplying the uniformly distributed load, in lbs., by the length of span in feet. Thus, if it is desired to find the size of an I beam required to carry a uniformly distributed load of $30,000 \mathrm{lbs}$., including its own weight, on a span 20 ft . between supports, allowing a fiber strain of $16,000 \mathrm{lbs}$. per
square inch, the coefficient required is obtained by multiplying the load, in lbs., by the span, in feet, thus;

$$
C=30,000 \times 20=600,000=\text { Coefficient required }
$$

and by reference to the table of properties of \mathbf{I} beams, it will be found that a $15^{\prime \prime} \mathbf{I}$ beam, weighing 4^{2} lbs. per foot, has a coefficient of strength of 611,000 and is sufficient for the purpose.

If the load is not uniformly distributed, but is concentrated at the center of the span, multiply the load by 2 and consider the result as a uniformly distributed load.

If the load is not uniformly distributed, or not concentrated at the center of the span, the bending-moment in foot-lbs. must be obtained; this bending-moment in foot-lbs. multiplied by 8 will give the coefficient required. Formulæ for the bending-moments for most cases occurring in ordinary practice are given on pages 107-1II. The bending-moment will be in foot-lbs., if the lengths are taken in feet.

The section modulus is used to determine the fiber strain per square inch on a beam, or other shape, subjected to bending, by simply dividing the bending-moment expressed in inch-lbs. by the section modulus. The section modulus is also used to guide in the selection of a beam, or other shape, required to sustain a given load. The section modulus required is obtained by dividing the bending moment, in inch-lbs., by the allowable fiber strain per square inch.

The use of the radii of gyration, given in the tables of properties for all sections, is explained in connection with the tables of the strength of columns.

				โฺ\％
				－¢
			－	
			웅융 흉	
		윤인인얀 		
4	$\begin{aligned} & \text { 'syyวu! 'วaojəg } \\ & \text { se sixe jexizu } \\ & \text { 'uoteiरjo jo snipey } \end{aligned}$			
		O－1～～		\％
			㫚	
		吕	\％	d
				$\begin{array}{\|l\|} \hline \text { Bapap } \\ 0.0 \end{array}$
			8	
	${ }^{\text {rady }}$		$\dot{-0}$	\％ส่వ
	Id 4 4 ¢ip M	¢．	－¢R	
		々¿\＆ะ\＆\＆	（ \times m	ロロロッ

			\cdots
qәм јо әиџ дәృиә ЧІІм ұчәр！эи！оว sixe ןexinəu 	Q NOLOO ズぞゴゴ		
 	$\left\lvert\, \begin{array}{lll} \infty & 8 & 8 \\ \infty & 8 & \infty \\ B & 0 & \infty \\ 0 \end{array}\right.$	욱 욱 웂	\％
		응	－
	8ito 8∞ 0150 以		
	－๗cル ๓ ハポํํํ		
	"ivig gig		
	\%		
	8101910% － 10 in 10 रो	$\dot{\circ} \dot{0}$－	
			¢\％¢
			$\left\lvert\,\right.$
			앖
	1218：20120		웅응

58 THE PASSAIC ROLLING MILL COMPANY．

		OOO 8 00°		 $000^{\circ} 0^{\circ}$
	qวм јо әи！дәృиәว ЧІІМ зиәр！̣！⿺𠃊 s！xe ןexinou ＇飞！̣даи I jo тuәuo IV	$-\omega$ がな	$\dot{=1} 0 \dot{0} 0$	下た
	 	\％	윤）	
$\frac{20}{4}$		$\begin{aligned} & 888 \\ & 888 \\ & 10 \\ & 106 \\ & 0.6 \end{aligned}$		
	 зиәюшәог 01 PPV	O R in	${ }_{4}^{8}$ 쥱	边
$\begin{gathered} \underset{\sim}{4} \\ \underset{\sim}{4} \\ \\ \hline 1 \end{gathered}$	－ul •bs aəd＇sqi 000＇gi jo uients 			
	＇səyวu！‘əдојəq se slxe feanau ＇uolueín jo snụpey	ธิ8 のダア	 	
U_{2}	－әоуәq se stre jexinou ‘snjпрой ио！̣эas	$\begin{aligned} & 01010 \\ & \text { ei } \\ & \text { Q } \\ & \hline 1 \end{aligned}$		がローか
A	ว土enbs sixe fexinau \boldsymbol{H} 	$\begin{aligned} & 20 \pi 10 \\ & -\cos \\ & =10 \end{aligned}$		$\begin{aligned} & 0 \pi N 0 \infty \\ & \text { Ngion } \end{aligned}$
		K\％\％	$\hat{i x i x}$	송
		¢9\％		${ }_{\square}^{\infty}$
	vax			
		웅	¢๐\％	
		으엉	のの๑ののの	$\infty \infty \infty$

＇sәчวu！‘әдодәq st sixe jexinau ì ‘иощехй ђјо sn！pey	$\begin{array}{r} -5 \\ 0.000 \\ 0000 \\ 000 \end{array}$	$\begin{aligned} & N R N \\ & N 000 \\ & 000 \end{aligned}$	$\begin{aligned} & \therefore \pi \\ & 000 \\ & 000 \end{aligned}$	$\begin{aligned} & 1207 \\ & 1005 \\ & 0.0 \end{aligned}$
－qวм јо วu！̣ дәנนәว sṭe ןexinau 				$\begin{aligned} & \infty \times \infty \\ & \infty \\ & 0.0 \\ & 0.0 \end{aligned}$
 јиә！эщว่ว 01 PPV		$\underset{\substack{G \\ \multirow{2}{*}{\multirow{2}{*}{\hline}}\\ \multirow {2} { * } \\ \hline}}{ }$	20 20 0 8 1	
ur •bs aəd •sql 		$\begin{aligned} & 8888 \\ & \text { N } 28 \\ & \text { N } \\ & 0 \end{aligned}$		
 эиวฺэугог от PPV	$\begin{array}{cc} B_{0}^{0} & 0_{0}^{0} \\ \text { N } \end{array}$	$\frac{80}{6} \frac{10}{6}$	$\begin{array}{ll} 0 & 0 \\ \dot{8} & \frac{8}{2} \\ \hline \end{array}$	$$
－ul •bs aəd＇sqi 000 ＇91 јо u！exis 	$\begin{aligned} & 8888 \\ & 88=0 \\ & 040 \\ & 0 \end{aligned}$	$\begin{aligned} & 8888 \\ & 0.8 \\ & 8.5 \\ & 8.0 \end{aligned}$		
‘รәчวu！‘əхојəq se sixe fexinau ‘иo！̣edíg jo snịpey	81098 ล囚ふふ			个o
－әојәq se stixe jexnma ＇snjnpoiv uo！̣วas			N No $\dot{0} \dot{0} \dot{\circ}$	
－хәнюә че qว 10 axenbs sixe ןexnou H 		$\begin{array}{cc} \infty \\ \infty \\ \infty \\ \infty \\ \infty \end{array}$		$\begin{array}{lll} \infty \\ \infty & 0 \\ 0 & 10 \\ 0 & 0 \end{array}$
		$\frac{9}{6} \frac{9}{6} 9$	잉ㅇํㅇ	ざざずす。
		N 	 	
		¢ ¢ \％ 2		
ن天ли		No 붕		
			$12 \mathrm{cc} \mathrm{T}^{\text {xit }}$	$\theta^{\text {dra }} 0$
	かいが，	00000	25122022	サワ ア

志范	－әииеч）јо भวeq woxy 	$\underset{\sim}{\underset{E}{n}}$	－ 101015	N上Nかもに 10101000	＋NTEが MFIOO.
		－	moseeq	＋＋120000 $\infty \infty \times \infty$	
	－ellizuI 	$\begin{aligned} & 1 \\ & \text { in } \end{aligned}$	19ギ웅 ジ○が心	8106102F128 	69， 15＊่ ช่ cisisi
	วบริวม u！วseวдวu！ ql чวeว 1of јuว！ －Щプン 01 PPV		$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & 10 \end{aligned}$		$\begin{array}{cc} \underset{6}{6} & \underset{6}{6} \\ \overbrace{6}^{2} \end{array}$
	＇чวu！әienbs xวd sql 000 ＇zi јо utulus zวqч 10ј ไuә！	Ò			
	\cdot •ษริเวм чวセว доf วuว！ －サ20つ 01 PPV		¢	$\begin{array}{ll} 0 & 0 \\ \text { O } & \text { E } \\ 0 & 0 \end{array}$	$\begin{array}{ll} 0 & 0 \\ 61 & 21 \\ i 0 & i \% \end{array}$
	＇Yวui ә．enbs دวd－sqi 000＇91 јo u！exis dวqy 10ј јиัวщว๐ว	0		8898989 420 02.20 คิำำ 	
	－səyวu！ ＇～omexin yo sinpey	H	－ 6190 		
	－snjnpoiv บo！jo2S	6	aios		
	＇อ！มวนI ј๐ ๆนวแ๐ N	H			
 		㐌		$\begin{aligned} & 1101910121 \\ & 99^{9} 9 \end{aligned}$	gige gig
	TA Jo ylpim	号	－6is 9 － $50 . \circ \circ \circ \circ$	G2x cicisioc 	－ 88∞ －
＊qə	1 〕0 ssวuหวโપL	咂		$\infty 501200160$ 16.67674961	운
	－easy	$\begin{aligned} & \dot{\Xi} \\ & \dot{\circ} \\ & \dot{\sim} \end{aligned}$			$\infty+600+$ $\infty \times 10^{\circ} 10^{\circ} 10^{\circ}$
		ค		1269 \％\％ 6196	
		$\underset{\oplus}{\dot{\oplus}}$	1819191919		으읭％

	yoeq wosy 	－0 ectror 0.019^{29}	$\infty-\infty)=1$ 101012101210	610196 ee ．o H1220
$\begin{aligned} & \text { 더́ } \\ & \text { Ku } \\ & 40 \end{aligned}$	＂səyวu！ ＇uoŋrakin jo sn！pey	FOTHNES		
$\begin{aligned} & 50 \\ & \text { 50 } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	јo ๆuวuold	01000004 － $1010100^{\circ} 0$ 	－10 -1000 $\infty \in+\cdots \infty$ 	
Neutral Axis perpendicular to Web at Center.	＇7บุริเวМ u！วseวıวu！＇q！ บวยว ปоร วนว！ว －以əoد of ppF	$\cos _{20}^{20}$		$\begin{array}{ll}0 & 0 \\ 10 & 0 \\ 01 & 01\end{array}$
	－You！ərenbs ıəd＇sqा $000^{\prime} \mathrm{zI} \overline{0}$ ј0 U！exłS 」əqЧ 10」 วนว！วщวロว			
	－วЧภิ！ นı วระวเวu！＇qा บวยว IOJ 7นว！ว －以ə0つ 07 PPV	$\underbrace{0}_{5}$－	${ }_{+1}^{0}$	¢ 0
	－५ou！əxenbs $x \partial \mathrm{~d} \cdot \mathrm{sq} \mathrm{Il}^{000^{\prime} 91} 0$ ј0 u！eizs גว૧५ ปof quə！วyjวoว			
		온ำ －2 รั่ รั 25 รั 50	cisisici sค่	$000020+0$ $10 \cdot 0.2100$ बig่งigici
	$\begin{aligned} & \text { *nŋnpoIN } \\ & \text { uo! } \end{aligned}$	$\begin{aligned} & \text { ersors } \\ & \text { +isiod } \end{aligned}$		$-1250+104$
	＂e！pวuI јо ๖นวแ๐แ			121010161012 －17－20 6 6 GOr Gi 6061616167m
＇qI чวeว доf qว M ј0 ssวuหว！		62959.89		
	ETH JO प\P： 11 号	－2 TO es er es to $12+6950$ cisicicisi		
－q\％		$1210^{0} 0660$ ＊2761626161		$12 c \infty$ －696169615！
		$61695+4 \infty$ 	$\theta+\infty 012610$ 	
	H		$\text { N12 } 9061 m \theta$	1－12 62 610 Hmに円m
${ }^{1} \mathrm{I}$		－ 0 O－ 0	0000000000	tomitur

		\％\％N0	원ㅈํㄴ		¢气に边
			\＃1210		18，
	－ท！มวиІ 三 			Sols	
	－7ч8！ u！əscวมวน！‘q！ чวยว дој เนว！ －y20コ 07 PPF		\％		
	＇Чכu！əienbs дəd sqil $000{ }^{\prime} z_{1}$ う 		$\begin{aligned} & 888 \\ & 10 \% \\ & x=0 \end{aligned}$		
	－ษบร์เวМ －yみว○ว 01 ppV		$\stackrel{9}{4}$		$\sum_{31} \underbrace{}_{61}$
	＇Yวu！axenbs 12d＇sql $000^{\prime} 91$ ј0 u！exis дวqy ปоІ วนวเว๖ว๐ว		$\begin{aligned} & 888 \\ & 1020 \\ & \text { Exis } \end{aligned}$		
	＇sәчวu！ ＇uoliexis fo sn！pey	$\begin{aligned} & \text { Qisign } 161 \mathrm{k} \\ & \text { disisisici } \end{aligned}$			
	－sninpolis ио！วəS		$\begin{aligned} & 5412 \\ & 0.89 \\ & -44 \end{aligned}$	$\begin{aligned} & \text { B } \\ & \dot{4}+8 \rightarrow 80 \end{aligned}$	
	＇ย！มวuI 	がシ151边	$\begin{aligned} & 129: 20 \\ & +090 \end{aligned}$	$\begin{aligned} & \text { EnK } \\ & \text { Ki } \\ & =0 \end{aligned}$	10 － 0 O －7 － 1200 ：
 		$\frac{5}{5} \frac{9}{9} \frac{1}{0}$	$\frac{9}{5}$	O	
			Sg	Eーが si曻	
＇qə	Ј0 SsวuYว！${ }_{\text {¢ }}^{\text {¢ }}$	－サッケ゚！	\％： 5 ¢		61以 615
			$\begin{aligned} & \text { +ion } \\ & \text { oisici } \end{aligned}$	－NOAO ๑่งisici－	
		8）	－ $0 \times$	－1200	$0 \times=2$
－${ }^{\text {－}}$			$\omega \cdot$	12121720	－ザ

PROPERTIES

	$\begin{aligned} & \text { Thich } \\ & \text { In } \end{aligned}$	$\begin{gathered} \text { Weight } \\ \text { perpot } \\ \text { Pound } \end{gathered}$			Neutral Axis paralle to flang				Neutral Axis suarat of oflang end			
$\begin{gathered} \text { flange } \\ \text { by stem. } \end{gathered}$					Moment of Ineria. Section Modulus.		${ }_{\text {Coeff of }}^{\text {Surnght }}$	${ }_{\text {Readius of }}^{\substack{\text { Curation }}}$	${ }_{\text {Momen }}^{\substack{\text { Momeria } \\ \text { Ineria }}}$	Soction		
	${ }^{3}$	13.6	${ }^{4.00}$	1.18	4	2.02		${ }^{1.20}$	2.80	1	14,900	
		11.7	${ }^{3.45}$		${ }_{3.72}$	1.52			${ }_{1} 1.89$	1.08	${ }_{111,500}^{11}$. 74
	$\frac{3}{8}$		2.70	1.01	3.06	1.23	13,120	1.06	1.42	0.81	8,640	0.73
	${ }^{\frac{1}{2}}$	${ }^{10.0}$	${ }_{2}^{2.94}$	0.93 0.92	${ }_{2}^{2.31}$	1.10	11,730 10750 1	${ }_{0}^{0.88}$	1.20 1.08	${ }_{0}^{0.80}$	50	${ }_{0}^{0.64}$
${ }_{3}$	${ }^{3}{ }^{\frac{3}{10}}$	7.8	2.28	${ }_{0} 0.88$	${ }_{1} 1.81$	${ }_{0.86}^{1.01}$	- 10,780	l 0.90 0.90	1.08	${ }_{0}^{0.7}$		0.64 0.63
	${ }^{18}$	6.6	1.95	0.86	1.59	0.74	7,940	0.90	0.75	0.5	5,330	0.6
$\frac{1}{2+} \times 2{ }^{2}$	${ }^{\frac{3}{8}}$	$\stackrel{6.4}{6.4}$	1.89	-0.76	${ }^{1.00}$	${ }^{0.5}$. 77				0.53
${ }_{2}$	${ }_{46}{ }^{16}$	4.3	1.	${ }_{0.63}^{0.78}$	0.45	0.50 0.33		${ }_{0}^{0.74} 0$	${ }_{0} 0.23$	0.35 0.23	40	0.43
	${ }_{4}^{18}$	3.7	1.08	0.59	0.36	0.25	2,670	0.60	${ }_{0.18}$	0.18	1,920	0.42
	${ }^{\frac{1}{4}}$	${ }_{2}^{3.1}$	${ }_{0}^{0.90}$	-0.54	0.23	${ }_{0}^{0.19}$	2,070	${ }^{0.51}$	0.12	0.14	1,490	0.37
		2.25	${ }_{0}^{0.66}$	(0.52 0.42	0.17 0.15	0.14 0.14 0.14	1,490	0.51	0.09	0.10 0.10 0	$\xrightarrow{1,100}$	${ }_{0}^{0.37}$
${ }_{1} \times 1 \times 1{ }_{1}$	${ }_{1} \frac{3}{68}$	1.85	0.54	0.44	0.11	0.11	1,140	${ }_{0}$	0.06	${ }_{0} 0.07$	${ }_{750}$	${ }_{0} .31$
	${ }^{\frac{3}{15}}$	${ }_{0.9}^{1.55}$	0.45 0.26	0.38 0.29 0.3	$\xrightarrow{0.064} \begin{aligned} & 0.022 \\ & 0\end{aligned}$	${ }_{0}^{0.07} 0$	-	0.37 0.29	$c00310011$	${ }_{0}^{0.05}$		

Size of T, in inches, flange by stem.	Thickness, Inches.	Weight per foot, Pounds.	Area of Section, Square Inches.	Dis., Cen. of Gravity from top, Inches.	Neutral Axis parallel to Flange.				Neutral Axis square to Flange and coincident with Stem.			
					Moment of Inertia.	Section Modulus.	Coeff. of Strength.	Radius of Gyration.	Moment of Inertia.	Section Modulus.	Coeff. of Strength.	Radius of Gyration.
$\begin{aligned} & 5 \times 3 \\ & 5 \times 3 \end{aligned}$	${ }^{\frac{1}{2}}$	14.0 11.0	4.11 3.24	0.76 0.69	2.66 2.13	1.19 0.92	12,630 9,810	0.80 0.81	5.56 4.25	2.22 1.70	23,720 18,130	1.16 1.14
$5 \times 2 \frac{1}{2}$	$\frac{1}{2}$	13.1	3.85	0.61	1.54	0.81	8,680	0.63	5.55	2.22	23,680	1.20
$5 \times 2 \frac{1}{2}$	$\frac{3}{8}$	10.3	3.03	0.56	1.24	0.64	6,830	0.64	4.24	1.70	18,100	1.18
4×3	$\frac{1}{2}$	11.7	3.46	0.83	2.48	1.14	12,160	0.85	2.78	1.39	15,000	0.90
4×3	$\frac{3}{8}$	9.2	2.70	0.78	2.00	0.90	9,600	0.86	2.10	1.05	11,200	0.88
4×2	$\frac{3}{8}$	7.8	2.28	0.48	0.60	0.40	4,240	0.52	2.09	1.04	11,090	0.96
$3 \frac{1}{2} \times 3$		10.8	3.18	0.88	2.43	1.15	12,260	0.88	1.88	1.07	11,400	0.77
$3 \frac{1}{2} \times 3$	$\frac{3}{8}$	8.5	2.48	0.83	1.92	0.88	9,420	0.88	1.41	0.81	8,600	0.75
$3 \times 2 \frac{1}{2}$	$\frac{3}{8}$	7.1	2.08	0.71	1.12	0.62	6,660	0.73	0.89	0.59	6,330	0.65
$3 \times 2 \frac{1}{2}$	$\frac{5}{16}$	6.1	1.78	0.68	0.94	0.52	5,520	0.73	0.75	0.50	5,300	0.65
3×2	$\frac{3}{8}$	6.4	1.88	0.54	0.56	0.38	4,100	0.55	0.88	0.58	6,180	0.69
$3 \times 1 \frac{1}{2}$	$\frac{3}{8}$	5.7	1.68	0.40	0.24	0.22	2,300	0.38	0.88	0.58	6,150	0.73
$2 \frac{1}{2} \times 3$	$\frac{3}{8}$	7.1	2.08	0.95	1.72	0.84	8,950	0.91	0.52	0.42	4,430	0.50
$2 \frac{1}{2} \times 3$	$\frac{5}{16}$	6.1	1.78	0.93	1.50	0.73	7,730	0.92	0.44	0.35	3,720	0.50
$2 \frac{1}{4} \times 1 \frac{1}{4}$	$\frac{1}{4}$	3.1	0.90	0.32	0.10	0.11	1,150	0.33	0.25	0.23	2,400	0.53
Coefficients of Strength are calculated for a maximum fiber strain of $16,000 \mathrm{lbs}$. per square inch.												

THE PASSAIC ROLLING MILI. COMPANY. 65

PROPERTIES OF PASSAIC STEEL ANGLES

OF MAXIMUM AND MINIMUM THICKNESSES AND WEIGHTS. EQUAL LEGS.

	Thickness, inches.								
6×6	$\frac{7}{8}$	34.0	10.03	1.87	35.3	8.17	87,100	1.87	1.20
6×6	$\frac{3}{8}$	14.8	4.36	1.64	15.4	3.52	37,500	1.88	1.20
5×5	$\frac{3}{4}$	24.2	7.11	1.56	17.0	4.78	51,000	1.55	1.00
5×5	$\frac{3}{8}$	12.3	3.61	1.39	8.74	2.42	25,800	1.56	1.00
4×4	$\frac{13}{16}$	20.8	6.11	1.35	9.45	3.32	35,400	1.24	. 80
4×4	$\frac{5}{16}$	8.16	2.40	1.12	3.72	1.29	13,800	1.24	. 80
$3 \frac{1}{2} \times 3 \frac{1}{2}$	$\frac{5}{8}$	13.5	3.98	1.10	4.33	1.81	19,300	1.04	. 70
$3 \frac{1}{2} \times 3{ }^{\frac{1}{2}}$	$\frac{5}{16}$	7.11	2.09	0.99	2.45	. 98	10,400	1.08	. 70
3×3	$\frac{5}{8}$	12.1	3.56	1.03	3.20	1.48	15,800	. 94	. 60
3×3	$\frac{1}{4}$	4.9	1.44	0.84	1.24	. 58	6,190	. 93	. 60
$2 \frac{1}{2} \times 2 \frac{1}{2}$	$\frac{1}{2}$	7.85	2.31	0.82	1.33	. 76	8,160	. 76	. 50
$2 \frac{1}{2} \times 2 \frac{1}{2}$	$\frac{1}{4}$	4.05	1.19	0.72	0.70	. 40	4,270	. 77	. 50
$2 \frac{1}{4} \times 2 \frac{1}{4}$	$\frac{1}{2}$	7.17	2.11	0.78	1.04	. 65	6,940	. 70	. 45
$2 \frac{1}{4} \times 2 \frac{1}{4}$	$\frac{3}{16}$	2.75	0.81	0.63	. 39	. 24	2,590	. 69	. 45
2×2	1	6.32	1.86	0.72	. 72	. 51	5,440	. 62	. 40
2×2	$\frac{1}{16}$	2.41	0.71	0.57	. 28	. 19	2,030	. 62	. 40
$1 \frac{3}{4} \times 1 \frac{3}{4}$	$\frac{7}{16}$	4.72	1.39	0.61	. 39	. 32	3,450	. 52	. 35
$1 \frac{3}{4} \times 1 \frac{3}{4}$	$\frac{3}{16}$	2.11	0.62	0.51	. 18	. 14	1,490	. 54	. 35
$1 \frac{1}{2} \times 1 \frac{1}{2}$	$\frac{3}{8}$	3.33	0.98	0.51	. 19	. 19	2,000	. 44	. 30
$1 \frac{1}{2} \times 1 \frac{1}{2}$	$\frac{3}{16}$	1.80	0.53	0.44	. 110	. 104	1,110	. 46	. 30
$1 \frac{1}{4} \times 1 \frac{1}{4}$	$\frac{5}{16}$	2.55	0.75	0.46	. 123	. 134	1,370	. 40	. 25
$1 \frac{1}{4} \times 1 \frac{1}{4}$	$\frac{1}{8}$	1.02	0.30	0.35	. 044	. 049	525	. 38	. 25
1×1	$\frac{1}{4}$	1.57	0.46	0.36	. 045	. 064	682	. 31	. 20
1×1	$\frac{1}{8}$	0.78	0.23	0.30	. 022	. 031	330	. 31	. 20
$\frac{7}{8} \times \frac{7}{8}$	$\frac{3}{16}$	0.99	0.29	0.29	. 019	. 033	352	. 26	. 175
$\frac{7}{8} \times \frac{7}{8}$	$\frac{1}{8}$	0.68	0.20	0.25	. 014	. 022	240	. 27	. 175
$\frac{3}{4} \times \frac{3}{4}$	$\frac{3}{16}$	0.85	0.25	0.26	. 012	. 024	256	. 22	. 15
$\frac{3}{4} \times \frac{3}{4}$	$\frac{1}{8}$	0.58	0.17	0.23	. 009	. 017	181	. 23	. 15

66 THE PASSAIC ROLLING MILL COMPANY.

THE PASSAIC ROLLING MILL COMPANY.
Neutral Axis Parallel to Shorter Flange.

AREAS

OF PASSAIC STEEL ANGLES.

Size of Angle, in Inches.	Areas, in Square Inches, for different Thicknesses.									
	$\frac{5}{16}{ }^{\prime \prime}$	$3^{\frac{3}{8}}$	$\frac{7111}{15}$	$\frac{1}{2}{ }^{\prime \prime}$	$\frac{9}{16}$	$\frac{5}{8 \prime}$	$\frac{11}{16}{ }^{\prime \prime}$	$\frac{3}{4 \prime}$	$\frac{1311}{10^{\prime \prime}}$	$\frac{711}{8 \prime}$
6×6		4.36	5.11	5.86	6.61	7.36	7.78	8.52	9.28	10.03
6×4		3.61	4.23	4.86	5.48	5.86	6.48	7.11	7.73	8.34
5×5		3.61	4.23	4.86	5.48	5.86	6.48	7.11		
$5 \times 3 \frac{1}{2}$		3.05	3.58	4.11	4.64	4.92	5.45	5.98		
5×3	2.40	2.90	3.31	3.81	4.18	4.68	5.18	5.68		
$4 \frac{1}{2} \times 3$	2.25	2.71	3.09	3.56	4.03	4.30	4.76	5.23		
4×4	2.40	2.90	3.31	3.81	4.31	4.61	5.11	5.61	6.11	
$4 \times 3 \frac{1}{2}$	2.25	2.71	3.09	3.56	4.03	4.30	4.76	5.23		
4×3	2.09	2.53	2.87	3.31	3.75	3.98				
$3 \frac{1}{2} \times 3 \frac{1}{2}$	2.09	2.53	2.87	3.25	3.69	3.98				
$3{ }_{\frac{1}{2}} \times 3$	1.93	2.30	2.71	3.00	3.41	3.67				
Size of Angle, in Inches.	Areas, in Square Inches, for different Thicknesses.									
	${ }^{\frac{1}{8}}{ }^{\prime \prime}$	${ }^{3} 111$	${ }^{1 \prime \prime}$	$\frac{5}{16}$	${ }^{311}$	${ }^{7} 111$	$\frac{1}{2}{ }^{\prime \prime}$	$\frac{9}{16}$	$5^{\prime \prime}$	$\frac{11}{16}$
$3 \frac{1}{2} \times 2 \frac{1}{\frac{1}{2}}$			1.44	1.81	2.11	2.48	2.75	3.13		
3 $\times 3$ 3 $\times 2$ 3 $\times 2$			1.44	1.78	2.15	2.43	2.81	3.18	3.56	
			1.31	1.66	1.92	2.27	2.50	2.84		
			1.19	1.50	1.73	2.04	2.25			
$2 \frac{1}{2} \times 2 \frac{1}{2}$ $2 \frac{1}{2} \times 2^{2}$ 2			1.19	1.46	1.78	2.00	2.31			
		. 81	1.09	1.31	1.59	1.89	2.18			
$\begin{aligned} & 2 \frac{1}{2 \frac{1}{4}} \times 2 \frac{1}{4} \\ & 2 \frac{1}{4} \times 1 \frac{1}{2} \end{aligned}$. 81	1.06	1.34	1.55	1.83	2.11			
		. 67	. 90	1.07						
$\begin{aligned} & 2 \times 2 \\ & 2 \times 1 \frac{3}{4} \end{aligned}$. 71	. 94	1.19	1.36	1.61	1.86			
		. 67	. 90	1.07						
	. 30	$\begin{array}{r} .62 \\ .53 \end{array}$. 81	$\begin{array}{r} 1.03 \\ .87 \\ .72 \end{array}$	$\begin{array}{r} 1.17 \\ .98 \end{array}$	1.39				
		. 45	. 56							
$1 \frac{1}{4} \times 1{ }^{\frac{1}{4}}$. 30	. 43	. 59 . 75							
1×1	. 23	. 34	. 46							
 7 $\frac{7}{8}$ \times $\frac{7}{4}$ \times	. 20	29								
$\frac{3}{4} \times \frac{3}{4}$. 17	. 25								

WEIGHTS
 OF PASSAIC STEEL ANGLES.

70 THE PASSAIC ROLLING MILL COMPANY.

Depth	Width	Thick-	Weight	Area	Neutral Axis perpendicular to Web.				Neutral Axis coincident with Web.				Least Radius of Gyration, neut. axis diagonal.
Web, Ins.	of Flange, Ins.	ness of Metal, Ins.	per Foot, Lbs.	Section, Sq. Ins.	Mom't of Inertia.	Section Modulus.	Rad. of Gyration.	Coeff. of Strength.	Mom't of Inertia.	Section Modulus.	Rad. of Gyration.	Coeff. of Strength.	
6	$3 \frac{1}{2}$	$\frac{3}{8}$	15.6	4.59	25.32	8.44	2.35	90,000	9.11	2.75	1.41	67,500	0.83
6_{16}^{1}	316	$\frac{7}{16}$	18.3	5.39	29.80	9.83	2.35	104,800	10.95	3.27	1.43	78,600	0.84
$6 \frac{1}{8}$	$3 \frac{5}{8}$	$\frac{1}{2}$	21.0	6.19	34.36	11.22	2.36	119,700	12.87	3.81	1.44	89,800	0.84
6	$3 \frac{1}{2}$	$\frac{9}{16}$	22.7	6.63	34.64	11.55	2.28	123,200	12.59	3.91	1.37	92,400	0.81
$6_{1}^{\frac{1}{6}}$	$3 \frac{9}{16}$	$\frac{5}{8}$	25.4	7.46	38.86	12.82	2.28	136,700	14.42	4.43	1.39	102,600	0.82
$6 \frac{1}{8}$	$3 \frac{5}{5}$	$\frac{1}{1} \frac{1}{6}$	28.0	8.25	43.18	14.10	2.29	150,400	16.34	4.98	1.41	112,800	0.84
	$3 \frac{1}{2}$	$\frac{3}{4}$	29.3	8.63	42.12	14.04	2.21	149,800	15.44	4.94	1.34	112,300	0.81
$6 \frac{1}{16}$	$3{ }_{16}{ }^{9}$	$\frac{13}{1} \frac{3}{6}$	32.0	9.40	46.13	15.22	2.22	162,300	17.27	5.47	1.36	121,800	0.82
	$3 \frac{5}{8}$	$\frac{7}{8}$	34.6	10.17	50.22	16.40	2.22	174,900	19.18	6.02	1.37	131,200	0.83
	$3 \frac{1}{4}$	$\sqrt{\frac{5}{16}}$	11.6	3.40	13.36	5.34	1.98	57,000	6.18	2.00	1.35	42,700	0.75
$5-\frac{1}{6}$	$3{ }_{16}^{5}$	$\frac{3}{8}$	13.9	4.10	16.18	6.39	1.99	68,200	7.65	2.45	1.37	51,100	0.76
$5 \frac{1}{8}$	$3{ }^{3}$	$\frac{7}{16}$	16.4	4.81	19.07	7.44	1.99	79,400	9.20	2.92	1.38	59,500	0.77
			17.8	5.25	19.19	7.68	1.91	81,900	9.05	3.02	1.31	61,400	0.74
$5 \frac{1}{16}$	$3 \frac{5}{16}$	$\begin{array}{r} 2 \\ -9 \end{array}$	20.2	5.94	21.83	8.62	1.91	91,900	10.51	3.47	1.33	69,000	0.75
$5 \frac{1}{8}$	$3 \frac{3}{8}$	$\frac{5}{8}$	22.6	6.64	24.53	9.57	1.92	102,100	12.06	3.94	1.35	76,600	0.76
			23.7	6.96	23.68	9.47	1.84	101,000	11.37	3.91	1.28		0.73
$\begin{aligned} & 5_{1}^{\frac{1}{16}} \\ & 51 \end{aligned}$	$3 \frac{5}{16}$	${ }^{\frac{3}{4}}$	26.0	7.64	26.16	10.34	1.85	110,300	12.83	4.37	1.30	$82,700$	0.75
	$3 \frac{3}{8}$	$\frac{13}{16}$	28.3	8.33	29.31	11.44	1.88	122,000	14.36	4.84	1.31	91,500	0.76
Coefficients are calculated for a maximum fiber strain of $16,000 \mathrm{lbs}$. per square inch.													

EXPLANATION OF TABLES ON SAFE LOADS.

The following tables give the safe uniformly distributed loads, in tons of $2,000 \mathrm{lbs}$., on Passaic Structural Shapes calculated for a maximum fiber strain of $16,000 \mathrm{lbs}$. per square inch. The loads given in the tables include the weights of the shapes, which must be deducted from the tabular loads in order to obtain the net superimposed loads which the shapes will carry.

Safe loads are given for the principal weights of \mathbf{I} beams usually rolled. The safe loads for intermediate or heavier weights of beams than those tabulated, can be obtained by the use of the separate column of corrections given for each size, which states the increase of safe load for each additional lb. increase in the weight per foot of the beam.

The safe loads of channels are tabulated only for the minimum weights. A separate column for each depth of channel gives the additional safe load for each lb . per foot increase in the weight of the channel, by the use of which the safe loads on the heavier weights of channels may be obtained.

The safe loads for Tees are given for all weights rolled.
The safe loads for Angles are given only for the minimum and maximum weights. The safe loads for intermediate weights may be obtained approximately by proportion.

The safe loads for \mathbf{Z} Bars are given for all the weights rolled.

It is assumed in these tables that the compression flanges of the beams or shapes are secured against yielding sideways. They should be held in position at distances not exceeding 20 times the width of the flange, otherwise the allowable loads should be reduced according to the following table:

BEAMS UNSUPPORTED SIDEWAYS.

Unsupported Length of Beam.	Greatest Safe Load.	Unsupported Length of Beam.	Greatest Safe Load.
$\begin{aligned} & 20 \times \text { flange width. } \\ & 30 " / " / " \\ & 40 \text { " " " } \end{aligned}$	$$	$\begin{aligned} & 50 \times \text { flange width. } \\ & 60 / " / 2 \\ & 70 " / " \end{aligned}$	0.7 tabular load. $\left\lvert\, \begin{array}{lll} 0.6 & \prime \prime & " \\ 0.5 & \prime \prime \end{array}\right.$

Deflection Coefficients are given for all the shapes, by the use of which the deflections, under the tabular loads, can be obtained by simply multiplying the Deflection Coefficient of the shape by the square of the span, in feet; the result being the deflection in inches. Thus, the deflection of a $15^{\prime \prime} \times 42$ lb . I beam on a span of 20 feet, fully loaded, is obtained by multiplying the Deflection Coefficient (.OOIIO3) by $\overline{20}^{2}$; the result being 0.44, which is the deflection in inches, or about ${ }_{7}^{7}{ }^{7}$ ".

Beams used in floors should not only be strong enough to carry the superimposed loads, but also sufficiently rigid to prevent vibration. For beams carrying plastered ceilings, if the deflection exceeds $\frac{1}{360}$ of the distance between supports, or $\frac{1}{30}$ of an inch per foot of span, there is danger of cracking the plaster. This limit is indicated in the tables by keavy cross lines beyond which the beams should not be used if intended to carry plastered ceilings, unless the allowable loads given in the tables are reduced in the following manner:
Let \triangle = deflection coefficient for the shape.
$\mathrm{L}=$ limiting span, in feet, at which the shape, fully loaded, has a deflection of $\frac{1}{360}$ of span.
$L^{\prime}=$ given span, in feet.
$\mathrm{W}^{\prime}=$ tabular safe load for span L^{\prime}.
$\mathrm{W}^{\prime \prime}=$ load on span L^{\prime} producing deflection of $\frac{1}{360}$ of span.
Then,

$$
\mathrm{L}=\frac{1}{30 \triangle},(1) ; \mathrm{W}^{\prime \prime}=\frac{\mathrm{W}^{\prime}}{30 \triangle \mathrm{~L}^{\prime}},(2) ; \mathrm{W}^{\prime \prime}=\frac{\mathrm{L}}{\mathrm{~L}^{\prime}} \mathrm{W}^{\prime},(3)
$$

Thus, if it is desired to find the load on a $10^{\prime \prime} \times 25 \mathrm{lb}$. I beam on a span of 30 ft ., which will produce a deflection of only $\frac{1}{360}$ of the span; the safe load, 4.35 tons, given in the table for a span of 30 feet, must be reduced by formula (3) as follows:

$$
\mathrm{W}^{\prime \prime}=\frac{20}{30} \times 4.35=2.90 \text { tons. }
$$

It may generally be assumed that the above limit of deflection is not exceedecl, both for rolled and built beams, unless the depth of the beam is less than $\frac{1}{2+}$ of the span. It should be noted, however, that some local building ordinances provide that no beam shall be of less depth than $\frac{1}{\chi_{0}}$ of the span.

74 THE PASSAIC ROLLING MILL COMPANY.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL I BEAMS,

In Tons of 2000 Lbs.,
beams being secured against yielding sideways.

	$20^{\prime \prime}$ I						
	90	85	80	75	70	65	
	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	
	per	per	per	per	per	per	
	Foot.	Foot.	Foot.	Foot.	Foot.	Foot.	
10	80.3	74.3	71.7	66.5	63.9	61.3	0.52
11	73.0	67.6	65.2	60.5	58.1	55.7	0.48
12	66.9	62.0	59.8	55.4	53.2	51.0	0.44
13	61.8	57.2	55.2	51.2	49.1	47.1	0.40
14	57.4	53.1	51.2	47.5	45.6	43.8	0.37
15	53.6	49.6	47.8	44.3	42.6	40.9	0.35
16	50.2	46.5	44.8	41.6	39.9	38.3	0.33
17	47.3	43.7	42.2	39.1	37.6	36.0	0.31
18	44.6	41.3	39.9	36.9	35.5	34.1	0.29
19	42.3	39.1	37.8	35.0	33.6	32.3	0.28
20	40.2	37.2	35.9	33.3	31.9	30.7	0.26
21	38.3	35.4	34.2	31.7	30.4	29.2	0.25
22	36.5	33.8	32.6	30.2	29.0	27.8	0.24
23	34.9	32.3	31.2	28.9	27.8	26.6	0.23
24	33.5	31.0	29.9	27.7	26.6	25.5	0.22
25	32.1	29.7	28.7	26.6	25.6	24.5	0.21
26	30.9	28.6	27.6	25.6	24.6	23.6	0.20
27	29.8	27.5	26.6	24.6	23.7	22.7	0.19
28	28.7	26.6	25.6	23.8	22.8	21.9	0.19
29	27.7	25.6	24.7	22.9	22.0	21.2	0.18
30	26.8	24.8	23.9	22.2	21.3	20.5	0.17
31	25.9	24.0	23.1	21.5	20.6	19.8	0.17
32	25.1	23.2	22.4	20.8	20.0	19.2	0.16
33	24.3	22.5	21.7	20.2	19.4	18.6	0.16
34	23.6	21.9	21.1	19.6	18.8	18.1	0.15
35	23.0	21.2	20.5	19.0	18.3	17.6	0.15
36	22.3	20.7	19.9	18.5	17.7	17.1	0.15
37	21.7	20.1	19.4	18.0	17.3	16.5	0.14
38	21.1	19.6	18.9	17.5	16.8	16.1	0.14
39	20.6	19.1	18.4	17.1	16.4	15.7	0.13
40	20.1	18.6	17.9	16.6	16.0	15.3	0.13

Deflection Coefficient . 000828
Safe loads given include weight of beam. Maximum fiber strain, $\mathbf{1 6 , 0 0 0}$ lbs. per square inch. Deflection of beam, in inches, under tabular load equals the product of the Deflection Coefficient by the square of the span, in feet.

THE PASSAIC ROLLING MILL COMPANY. 75

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL I BEAMS,

In Tons of 2000 Lbs.,
BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

	$18^{\prime \prime} \mathrm{I}$						
	80	75	70	65	60	55	
	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	
	per Foot	per Foot.	per Foot.	per Foot.	per Foot.	per Foot.	
10	67.0	64.7	57.7	52.5	50.2	47.8	0.47
11	60.9	58.8	52.4	47.7	45.6	43.5	0.43
12	55.9	53.9	48.1	43.8	41.8	39.8	0.39
13	51.6	49.8	44.4	40.4	38.6	36.8	0.36
14	47.9	46.2	41.2	37.5	35.8	34.2	0.34
15	44.7	43.1	38.4	35.0	33.4	31.9	0.31
16	41.9	40.4	36.0	32.8	31.4	29.9	0.29
17	39.4	38.1	33.9	30.9	29.5	28.1	0.28
18	37.3	35.9	32.0	29.2	27.9	26.6	0.26
19	35.3	34.1	30.4	27.6	26.4	25.2	0.25
20	33.5	32.4	28.8	26.3	25.1	23.9	0.24
21	31.9	30.8	27.5	25.0	23.9	22.8	0.22
22	30.5	29.4	26.2	23.9	22.8	21.7	0.21
23	29.1	28.1	25.1	22.8	21.8	20.8	0.20
24	27.9	27.0	24.0	21.9	20.9	19.9	0.20
25	26.8	25.9	23.1	21.0	20.1	19.1	0.19
26	25.8	25.0	22.2	20.2	19.3	18.4	0.18
27	24.8	24.0	21.4	19.4	18.6	17.7	0.17
28	24.0	23.1	20.6	18.8	17.9	17.1	0.17
29	23.1	22.3	19.9	18.1	17.3	16.5	0.16
30	22.4	21.6	19.2	17.5	16.7	15.9	0.16
31	21.6	20.9	18.6	17.0	16.2	15.4	015
32	21.0	20.2	18.0	16.4	15.7	14.9	0.15
33	20.3	19.6	17.5	15.9	15.2	14.5	0.14
34	19.7	19.0	17.0	15.5	14.8	14.1	0.14
35	19.2	18.5	16.5	15.0	14.3	13.7	0.13
36	18.6	18.0	16.0	14.6	13.9	13.3	0.13
37	18.1	17.5	15.6	14.2	13.6	12.9	0.13
38	17.7	17.0	15.2	13.8	13.2	12.6	0.12
39	17.2	16.6	14.8	13.5	12.9	12.3	0.12
40	16.8	16.2	14.4	13.1	12.5	12.0	0.12

Deflection Coefficient, . 000920
Safe loads given include weight of heam. Maximum fiber strain, 16,000 lbs. per square inch. Deflection of beam, in inches, under tabular load equals the product of the Deflection Coefficient by the square of the span, in feet.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL I BEAMS,

In Tons of 2000 Lbs.,

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

	$15^{\prime \prime} \mathrm{I}$									
	80	75	70	65	6	55				
		Lbs.		bs.	Lbs.					
	Ft.	${ }_{\text {per }}$	$\stackrel{\mathrm{per}}{\mathrm{Ft}}$	Ft.	per	Per	${ }_{\text {per }}$	per Ft.	${ }_{\text {per }}^{\text {per }}$	
10	53.2	51.2	49.3	47.3	45.4	39.6	37.7	31.7	30.6	0.39
11	48.3	46.6	44.8	43.0	41.2	36.0	34.2	28.8	27.8	0.36
12	44.3	42.7	41.1	39.4	37.8	33.0	31.4	26.4	25.4	0.33
13	40.9	39.4	37.9	36.4	34.9	30.5	29.0	24.4	23.5	0.30
14	38.0	36.6	35.2	33.8	32.4	28.3	26.9	22.7	21.8	0.28
15	35.5	34.2	32.8	31.5	30.2	26.4	25.1	21.1	20.4	0.26
16	33.2	32.0	30.8	29.6	28.3	24.8	23.5	19.8	19.2	0.25
17	31.3	30.1	29.0	27.8	26.7	23.3	22.2	18.7	17.9	0.23
18	29.5	28.5	27.4	26.3	25.2	22.0	20.9	17.6	17.0	0.22
19	27.9	27.0	25.9	24.9	23.9	20.9	19.8	16.7	16.1	0.21
20	26.6	25.6	24.6	23.7	22.7	19.8	18.8	15.9	15.3	20
21	25.3	24.4	23.5	22.5	21.6	18.9	17.9	15.1	14	0.19
22	24.2	23.3	22.4	21.5	20.6	18.0	17.1	14.4	13.9	0.18
23	23.1	22.3	21.4	20.6	19.7	17.2	16.4	13.8	13.3	0.17
24	22.2	21.3	20.6	19.7	18.9	16.5	15.7	13.2	12.8	0.16
25	21.3	20.5	19.7	18.9	18.1	15.8	15.1	12.7	12.3	0.16
26	20.5	19.7	19.0	18.2	17.4	15.2	14.5	12.2	11.8	0.15
27	19.7	19.0	18.2	17.5	16.8	14.7	14.0	11.7	11.4	0.15
28	19.0	18.3	17.6	16.9	16.2	14.2	13.5	11.3	10	0.14
29	18.3	17.7	17.0	16.	15.6	13.	13.0	10	10	0.14
30	17.8	17.1	16.4	15.8	15.1	13.2	12.6	10.6	10.2	0.13
31	17.2	16.5	15.9	15.3	14.6	12.8	12.2	10.2	9.86	0.13
32	16.6	16.0	15.4	14.8	14.2	12.4	11.8	9.92	9.56	0.13
33	16.1	15.5	14.9	14.3	13.7	12.0	11.4	9.61	9.26	0.12
34	15.6	15.1	14.5	13.9	13.3	11.7	11.1	9.33	8.98	0.11
35	15.2	14.6	14.1	13.5	13.0	11.3	10.8	9.06	8.73	0.11
36	14.8	14.2	13.7	13.1	12.6	11.0	10.5	8.8	8.49	0.11
37	14.4	13.8	13.3	12.8	12.3	10.7	10.2	8.57	8.26	0.11
38	14.0	13.5	13.0	12.4	11.9	10.4	9.91	8.35	8.04	0.10
39	13.6	13.1	12.6	12.1	11.6	10.2	9.66	8.13	7.83	0.10
40	13.3	12.8	12.3	11.8	11.3	9.90	9.42	7.93	7.64	0.10

Deflection Coefficient . 001103
Safe loads given include weight of beam. Maximum fiber strain, $16,000 \mathrm{lbs}$. per square inch. Deflection of beam, in inches, under tabular load, equals the product of the Deflection Coefficient by the square of the span, in feet.

THE PASSAIC ROLLING MILL COMPANY. 77

SAFE LOADS, UNIFORIILY DISTRIBUTED, FOR PASSAIC STEEL I BEAMS,

In Tons or 2000 Lbs.,

beams being sectred against ytelding sideways.

¢	$12^{\prime \prime} \mathrm{I}$								
$\left\|\begin{array}{c} E \\ \vdots \\ \vdots \\ 0 \\ 0 \end{array}\right\|$	$\begin{gathered} 65 \\ \text { Lbs. } \\ \text { perFt. } \end{gathered}$	$\begin{gathered} 60 \\ \begin{array}{c} \text { Lbs. } \\ \text { per } \end{array} \text {. } \end{gathered}$	$\underset{\substack{55 \\ \text { Lbs. } \\ \text { per } \\ \hline}}{ }$	$\begin{gathered} 50 \\ \text { Lbs. } \\ \text { per } \mathrm{Ft} . \end{gathered}$	$\begin{gathered} 45 \\ \text { Lbs. } \\ \text { per } \end{gathered}$	$\begin{gathered} 40 \\ \text { Lbs. } \\ \text { per Ft. } \end{gathered}$	$\begin{gathered} 35 \\ \text { L.bs. } \\ \text { per } \mathrm{Ft} . \end{gathered}$	$\begin{aligned} & 311 / 2 \\ & \text { Lbs. } \\ & \text { per } \mathrm{Ft.} \end{aligned}$	
8	43.7	41.8	39.8	35.2	33.2	31.3	25.9	24.5	0.39
-	38.9	37.1	35.4	31.2	29.5	27.8	23.0	21.8	0.35
10	35.0	33.4	31.8	28.1	26.6	25.0	20.7	19.6	0.31
11	31.8	30.4	28.8	25.6	24.2	22.7	18.8	17.9	0.29
12	29.2	27.8	26.5	23.5	22.1	20.8	17.3	16.4	0.26
13	26.9	25.7	24.5	21.6	20.4	19.2	15.9	15.1	0.24
14	25.0	23.9	22.8	20.1	19.0	17.9	14.8	14.0	0.22
15	23.3	22.3	21.2	18.8	17.7	16.7	13.8	13.1	0.21
16	21.9	20.9	19.9	17.6	16.6	15.6	12.9	12.3	0.20
17	20.6	19.7	18.7	16.6	15.6	14.7	12.2	11.5	0.18
18	19.4	18.6	17.7	15.6	14.8	13.9	11.5	10.9	0.17
19	18.4	17.6	16.8	14.8	14.0	13.2	10.9	10.3	0.17
20	17.5	16.7	15.9	14.1	13.3	12.5	10.4	9.80	0.16
21	16.7	15.9	15.2	13.4	12.7	11.9	9.86	9.33	0.15
22	15.9	15.2	14.4	12.8	12.1	11.4	9.41	8.91	0.14
23	15.2	14.5	13.8	12.2	11.6	10.9	9.00	8.52	0.14
24	14.6	13.9	13.3	11.7	11.1	10.4	8.63	8.16	0.13
25	14.0	13.4	12.7	11.3	10.6	10.0	8.28	7.83	0.13
26	13.5	12.9	12.2	10.8	10.2	9.62	7.96	7.54	0.12
27	13.0	12.4	11.8	10.4	9.84	9.26	7.67	7.26	0.12
28	12.5	11.9	11.4	10.1	9.49	8.93	7.40	7.00	0.11
29	12.1	11.5	11.0	9.70	9.16	8.62	7.14	6.76	0.11
30	11.7	11.1	10.6	9.38	8.86	8.34	6.90	6.54	0.10
31	11.3	10.8	10.3	9.08	8.57	8.07	6.68	6.32	0.10
32	10.9	10.4	10.0	8.79	8.30	7.81	6.47	6.13	0.10
33	10.6	10.1	9.6	8.53	8.05	7.58	6.27	5.94	0.10
34	10.3	9.83	9.4	8.28	7.82	7.35	6.09	5.76	0.09
35	10.0	9.55	9.1	8.04	7.59	7.14	5.92	5.60	0.09

Deflection Coefficient . 001379
Safe loads given include weight of leam. Maximum fiber strain, 16,000 lbs. per square inch. Deflection of beam, in inches, under tabular load equals the product of the Deflection Coefficient by the square of the span, in feet.

78 THE PASSAIC ROLLING MILL COMPANY.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL I BEAMS,

In Tons of 2000 Lbs.,
BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

	$10^{\prime \prime} \mathrm{I}$						
	40 Lbs. per Foot.	35 Lbs. per Foot.	33 Lbs. per Foot.	30 Lbs. per Foot.	27 Lbs. per Foot.	25 Lbs. per Foot.	
8	23.8	22.2	21.5	18.0	17.0	16.3	0.33
9	21.2	19.7	19.1	16.0	15.1	14.5	0.29
10	19.0	17.7	17.2	14.4	13.6	13.1	0.26
11	17.3	16.1	15.6	13.1	12.4	11.9	0.24
12	15.9	14.8	14.3	12.0	11.3	10.9	0.22
13	14.7	13.6	13.2	11.1	10.5	10.1	0.20
14	13.6	12.7	12.3	10.3	9.70	9.33	0.19
15	12.7	11.8	11.5	9.58	9.06	8.71	0.17
16	11.9	11.1	10.8	8.98	8.49	8.16	0.16
17	11.2	10.4	10.1	8.46	7.99	7.68	0.15
18	10.6	9.85	9.56	7.99	7.55	7.26	0.15
19	10.0	9.33	9.05	7.57	7.15	6.87	0.14
20	9.52	8.86	8.60	7.19	6.79	6.53	0.13
21	9.07	8.44	8.19	6.85	6.47	6.22	0.12
22	8.65	8.06	7.82	6.53	6.18	5.94	0.12
23	8.28	7.71	7.48	6.25	5.91	5.68	0.11
24	7.93	7.39	7.17	5.99	5.66	5.44	0.11
25	7.62	7.09	6.88	5.75	5.43	5.22	0.10
26	7.32	6.82	6.62	5.53	5.23	5.02	0.10
27	7.05	6.56	6.37	5.32	5.03	4.84	0.10
28	6.80	6.33	6.14	5.13	4.85	4.66	0.09
29	6.57	6.11	5.93	4.96	4.68	4.50	0.09
30	6.35	5.91	5.73	4.79	4.53	4.35	0.09
31	6.14	5.72	5.54	4.64	4.38	4.21	0.08
32	5.95	5.54	5.38	4.49	4.25	4.08	0.08
33	5.77	5.37	5.21	4.36	4.12	3.96	0.08
34	5.60	5.21	5.06	4.23	4.00	3.84	0.08
35	5.44	5.06	4.91	4.11	3.88	3.73	0.08

> Deflection Coefficient, .001655

Safe loads given include weight of beam. Maximum fiber strain, 16,000 lbs. per square inch. Deflection of beam, in inches, under tabular load equals the product of the Deflection Coefficient by the square of the span, in feet.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL I BEAMS,

In Tons of 2000 Lbs.,

BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

Safe loads given include weight of beam. Maximum fiber strain, 16,000 lbs. per square inch. Deflection of beam, in inches, under tabular load equals the product of the Deflection Coefficient by the square of the span, in feet.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL I BEAMS,

In Tons of 2000 Lbs., BEAMS BEING SECURED AGAINST YIELDING SIDEWAYS.

苂	$7^{\prime \prime} \mathrm{I}$					$6^{\prime \prime}$ I				
. 5	22	20	$17^{1 / 2}$	15		20	171/2	15	12	
E	Lbs.	Lbs.	Lbs.	Lbs.		Lbs.	Lbs.	Lbs.	Lbs.	
ก.	per Foot.	per Foot.	per Foot.	per Foot.		per Foot.	per Foot.	per Foot.	per	
5	. 2	4.5	12.2	1.3	0.37	11.0				
	12.7	12.1	10.2	9.43	0.31	9.15	8.49	7.85	45	26
	10.9	10.4	8.73	8.08	0.26	7.84	7.28	6.78	5.53	.23
8	9.53	9.07	7.64	7.07	0.23	6.86	6.37	5.88	4.84	0.20
9	8.47	8.06	6.79	6.28	0.20	6.10	5.66	5.23	4.30	0.18
10	7.62	7.26	6.11	5.66	0.18	5.49	5.09	4.70	.	0.16
11	6.93	6.60	5.56	5.14	0.17	4.99	4.63		3.51	0.14
12	6.35	6.05	5.09	4.71	0.15	4.57	4.24	3.	22	13
13	5.86	5.58	4.70	4.35	0.14	4.22	3.92		. 9	12
14	5.44	5.18	4.37	4.04	0.13	3.92	3.64	3.36	2.76	0.11
15	5.08	4.84	4.08	3.77	0.12	3.66	3.40	3.13	2.5	. 10
16	4.76	4.53	3.82	3.53	0.11	3.43	3.1	94	42	. 10
17	4.48	4.27	3.60	3.33	0.11	3.23	3.00	76	27	0.09
18	4.23	4.03	3.40	3.14	0.10	3.05	2.83	2.61	2.15	. 09
19	4.01	3.82	3.22	2.98	0.10	2.89	2.68	2.47	2.04	0.08
20	3.81	3.63	3.06	2.83	0.09	2.74	2.55	2.35	1.93	0.08
21	3.63	3.45	2.91	2.69	0.09	2.61	2.	2	1.84	. 08
22	3.46	3.30	2.78	2.57	0.08	2.49	2.32	2	1.	0.07
23	3.31	3.15	2.66	2.46	0.08	2.39	2.22	2.0	1.6	0.07
24	3.18	3.02	2.55	2.36	0.08	2.29	2.12	1.96	1.61	0.07
25	3.05	2.90	2.45	2.26	0.07	2.20	2.04	1.88	1.5	0.06
	Deflection Coefficient, .002365					Deflection Coefficient, .002759				

Safe loads given include weight of beam. Maximum fiber strain, 16,000 lbs. per square inch. Deflection of beam, in inches, under tabular load equals the product of the Deflection Coefficient by the square of the span, in feet.

SAFE LOADS, UNIFORIILY DISTRIBUTED, FOR PASSAIC STEEL \mathbb{Z} BEAMS, In Tons of 2000 Lbs.,

BEAMS BEING SECLRED AGAINST YIELDING SIDEWAYS.

\pm	$5^{\prime \prime}$ I					$4^{\prime \prime}$ I				
	$\begin{gathered} \hline 15 \\ \text { Lbs. } \\ \text { per } \\ \text { Foot. } \end{gathered}$	$\begin{array}{\|c} 13 \\ \text { Lbs. } \\ \text { per } \\ \text { Foot. } \end{array}$	$\begin{array}{\|c} 12 \\ \text { Lbs. } \\ \text { per } \\ \text { Foot. } \end{array}$	$\begin{array}{\|c} \AA_{i g} \\ \text { Lbs. } \\ \text { per } \\ \text { Foot. } \end{array}$		$\begin{array}{\|c} 10 \\ \text { Lbs. } \\ \text { per } \\ \text { Foot. } \end{array}$	$\begin{gathered} 8 \\ \hline \text { Lbs. } \\ \text { per } \\ \text { Foot. } \end{gathered}$		$\begin{array}{\|c} 6 \\ \hline \text { Lbs. } \\ \text { per } \\ \text { Foot. } \end{array}$	
	7.21	6.70	5.79	5.20	0.26	3.65	3.23	3.12	2.45	0.21
	6.01	5.58	4.82	4.32	0.22	3.05	2.69	2.60	2.04	0.18
	5.15	4.78	4.13	3.71	0.19	2.61	2.30	2.23	1.75	0.15
	4.51	4.19	3.62	3.25	0.16	2.28	2.02	1.95	1.53	0.13
	4.	3.72	3.22	2.88	0.15	2.03	1.79	1.74	1.	0.12
10	3.61	3.35	2.89	2.60	0.13	1.83	1.61	1.56		
11	3.	3.04	2.63	2.36	0.12	. 66	1.47	1.42	1.11	
12	3.01	2.79	2.41	2.16	0.11	1.52	1.34	1.30	1.02	0.09
13	2.78	2.58	2.23	2.00	0.10	1.40	1.24	1.20	0.95	0.08
14	2.58	2.37	2.07	1.86	0.09	1.30	1.15	1.11	0.8	0.
15	2.40	2.23	1.93	. 73	0.0	1.22	1.08	1.04	0.82	0.07
16	2.25	2.09	1.81	1.62	0.08	1.14	1.01	0.98	0.	0.07
17	2.12	1.97	1.70	1.53	0.08	1.07	0.95	0.92	0.72	0.06
18	2.00	1.86	1.61	1.44	0.07	1.01	0.90	0.87	0.6	0.06
19	1.90	1.76	1.52	1.36	0.07	0.97	0.85	0.82	0.6	0.0
20	1.80	1.67	45	30	0.07	0.92	0.81	8	. 61	0.05
21	1.72	1.59	1.38	1.24	0.06	0.87	0.77	0.74	0.5	0.05
22	1.64	1.52	1.32	1.19	0.06	0.83	0.73	0.71	0.5	0.0
23	1.57	1.45	1.26	1.13	0.06	0.80	0.70	0.68	0.53	0.
24	1.50	1.39	1.21	1.09	0.05	0.76	0.67	0.65	0.51	0.04
25	1.44	1.34	1.16	1.04	0.05	0.73	0.65	0.62	0.49	0.0
Deflection Coefficient,.003310						Deflection Coefficient,.004138				

Safe loads given include weight of beam. Maximum fiber strain, 16,000 lbs. per square inch. Deflection of beam, in inches, under tabular load equals the product of the Deflection Coefficient by the square of the span, in feet.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL CHANNELS,

In tons of 2000 lbs .,
CHANNELS BEING SECURED AGAINST YIELDING SIDEWAYS.

$\begin{aligned} & \text { Span, } \\ & \text { in } \\ & \text { Feet. } \end{aligned}$	$\begin{gathered} 15^{\prime \prime} \\ 40 \mathrm{Lbs} . \\ \text { per Ft. } \end{gathered}$	$\begin{aligned} & 15^{\prime \prime} \\ & 33 \text { Lbs. } \\ & \text { per Ft. } \end{aligned}$		$\begin{gathered} 12^{\prime \prime} \\ 2^{27} \text { Lbs. } \\ \text { per Ft. } \end{gathered}$	$\begin{gathered} 12^{\prime \prime} \\ 20 \text { Lbs. } \\ \text { per Ft. } \end{gathered}$	
6	40.6	36.0	0.65	23.85	18.48	0.52
7	34.8	30.8	0.56	20.44	15.84	0.44
8	30.5	27.0	0.49	17.89	13.86	0.39
9	27.1	24.0	0.43	15.90	12.32	0.35
10	24.4	21.6	0.39	14.31	11.09	0.31
11	22.2	19.6	0.36	13.01	10.08	0.29
12	20.3	18.0	0.33	11.93	9.24	0.26
13	18.7	16.6	0.30	11.01	8.53	0.24
14	17.4	15.4	0.28	10.22	7.92	0.22
15	16.2	14.4	0.26	9.54	7.39	0.21
16	15.2	13.5	0.25	8.94	6.93	0.20
17	14.3	12.7	0.23	8.42	6.52	0.18
18	13.5	12.0	0.22	7.95	6.16	0.17
19	12.8	11.4	0.21	7.53	5.8.3	0.17
20	12.2	10.8	0.20	7.16	5.54	0.16
21	11.6	10.3	0.19	6.81	5.28	0.15
22	11.1	9.81	0.18	6.50	5.04	0.14
23	10.6	9.40	0.17	6.22	4.82	0.14
24	10.2	9.01	0.16	5.96	4.62	0.13
25	9.75	8.65	0.16	5.72	4.43	0.13
26	9.37	8.32	0.15	5.50	4.26	0.12
27	9.02	8.01	0.15	5.30	4.11	0.12
28	8.70	7.72	0.14	5.11	3.96	0.11
29	8.40	7.46	0.14	4.93	3.82	0.11
30	8.12	7.22	0.13	4.77	3.70	0.10
31	7.86	6.98	0.13	4.62	3.58	0.10
32	7.61	6.76	0.13	4.47	3.46	0.10
33	7.38	6.55	0.12	4.34	3.36	0.10
34	7.17	6.36	0.11	4.21	3.26	0.09
35	6.96	6.18	0.11	4.09	3.17	0.09
	Deflection Coefficient, .001103			Deflection Coefficient, .001379		

Safe loads given include weight of channel. Maximum fiber strain, 16,000 lbs. per squareinch. Deflection of channel, in inches, under tabularload equals the product of the Deflection Coefficient by the square of the span, in feet.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL CHANNELS,

In tons of 2000 lbs .,
CHANNELS BEING SECURED AGAINST YIELDING SIDEWAYS.

	$\begin{gathered} 10^{\prime \prime} \\ 20 \text { lbs. } \\ \text { per Ft. } \end{gathered}$	$\begin{gathered} 10^{\prime \prime} \\ 15 \mathrm{lbs} . \\ \text { per Ft. } \end{gathered}$		$\begin{gathered} 9^{\prime \prime} \\ 16 \mathrm{lbs}^{\prime \prime} \\ \text { per Ft. } \end{gathered}$	$\begin{gathered} 9^{\prime \prime} \\ 13 \mathrm{lbs} . \\ \text { per } \mathrm{Ft} . \end{gathered}$		$\begin{gathered} 8^{\prime \prime} \\ 13 \mathrm{lbs} . \\ \text { per Ft. } \end{gathered}$	$\begin{gathered} 8^{\prime \prime} \\ 10 \\ \text { per lbs. } \end{gathered}$	
5	18.2	14.3	0.52	13.5	10.8	0.48	9.48	7.52	0.42
6	15.2	11.9	0.44	11.3	8.98	0.40	7.90	6.27	0.34
7	13.0	10.2	0.38	9.67	7.69	0.34	6.77	5.37	0.30
8	11.4	8.91	0.33	8.46	6.73	0.29	5.92	4.70	0.26
9	10.1	7.92	0.29	7.52	5.98	0.26	5.27	4.18	0.23
$\overline{10}$	9.12	7.13	0.26	6.76	5.38	0.24	4.74	3.76	0.21
11	8.29	6.48	0.24	6.15	4.90	0.21	4.31	3.42	0.19
12	7.60	5.94	0.22	5.64	4.49	0.20	3.95	3.14	0.17
13	7.02	5.48	0.20	5.20	4.14	0.18	3.65	2.89	0.16
14	6.52	5.09	0.19	4.83	3.85	0.17	3.39	2.69	0.15
15	6.08	4.75	0.17	4.51	3.59	0.16	3.16	2.51	14
16	5.70	4.46	0.16	4.23	3.37	U.15	2.96	2.35	0.13
17	5.37	4.19	0.15	3.98	3.17	0.14	2.79	2.21	0.12
18	5.07	3.95	0.15	3.76	2.99	0.13	2.64	2.09	0.12
19	4.80	3.75	0.14	3.56	2.83	0.12	2.50	1.98	0.11
20	4.56	3.56	0.13	3.38	2.69	$\overline{0.12}$	2.37	1.88	0.10
21	4.34	3.40	0.12	3.22	2.56	0.11	2.26	1.79	0.10
22	4.14	3.24	0.12	3.08	2.45	0.11	2.16	1.71	0.09
23	3.96	3.10	0.11	2.94	2.34	0.10	2.06	1.63	0.09
24	3.80	2.96	0.11	2.82	2.24	0.10	1.97	1.56	0.09
25	3.65	2.85	0.10	2.71	2.15	0.09	1.90	1.50	0.08
26	3.51	2.74	0.10	2.60	2.07	0.09	1.83	1.44	0.08
27	3.38	2.64	0.10	2.50	2.00	0.09	1.76	1.39	0.08
28	3.26	2.54	0.09	2.41	1.93	0.08	1.69	1.34	0.07
29	3.15	2.45	0.09	2.33	1.86	0.08	1.63	1.30	0.07
30	3.04	2.38	0.09	2.26	1.80	0.08	1.58	1.26	0.07
	Deflection Coefficient, .001655			Deflection Coefficient, . 001839			Deflection Coefficient, .002069		

Safe loads given include weight of channel. Maximum fiber strain, $\mathbf{x}, 000$ lbs . per square inch. Deflection of channel, in inches, under tabularload, equals the product of the Deflection Coefficient by the square of the span, in feet.

84 THE PASSAIC ROLLING MILL COMPANY.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL CHANNELS,

In tons of 2000 lbs .,
CHANNELS BEING SECURED AGAINST YIELDING SIDEWAYS.

$\begin{aligned} & \text { Span, } \\ & \text { in } \\ & \text { Feet. } \end{aligned}$	$\begin{gathered} 7^{\prime \prime} \\ 13 \mathrm{Lbs} . \\ \text { per Ft. } \end{gathered}$	$\begin{aligned} & 7^{\prime \prime \prime} \\ & 9 \text { Lbs. } \\ & \text { Ler Ft. } \end{aligned}$		$\begin{gathered} 6^{\prime \prime} \\ 17^{\prime \prime} \mathrm{Lbs} . \\ \text { per Ft. } \end{gathered}$	$\begin{gathered} 6^{\prime \prime} \\ 12 \text { Lbs. } \\ \text { per Ft. } \end{gathered}$	$\begin{gathered} 6.1 \\ 8 \mathrm{Lbs.} \\ \text { per } \mathrm{Ft} . \end{gathered}$	
5	8.33	5.79	0.37	9.05	6.64	4.54	0.31
6	6.94	4.83	0.32	7.53	5.53	3.78	0.26
7	5.95	4.13	0.26	6.46	4.74	3.24	0.22
8	5.21	3.62	0.23	5.64	4.15	2.84	0.20
9	4.63	3.22	0.20	5.02	3.69	2.52	0.17
10	4.17	2.90	0.18	4.52	3.32	2.27	0.16
11	3.79	2.62	0.17	4.10	3.02	2.06	0.14
12	3.47	2.41	0.15	3.76	2.77	1.89	0.13
13	3.20	2.22	0.14	3.48	2.55	1.74	0.12
14	2.98	2.06	0.13	3.23	2.35	1.62	0.11
15	2.78	1.93	0.12	3.01	2.21	1.51	0.10
16	2.60	1.81	0.11	2.82	2.07	1.42	0.10
17	2.45	1.70	0.11	2.66	1.95	1.33	0.09
18	2.32	1.61	0.10	2.51	1.84	1.26	0.09
19	2.19	1.52	0.10	2.38	1.75	1.19	0.08
20	2.08	1.45	0.09	2.26	1.66	1.13	0.08
21	1.97	1.38	0.09	2.15	1.58	1.08	0.07
22	1.89	1.32	0.08	2.05	1.51	1.03	0.07
23	1.82	1.26	0.08	1.96	1.44	. 99	0.07
24	1.74	1.20	0.08	1.88	1.38	. 95	0.07
25	1.67	1.16	0.07	1.81	1.33	. 91	0.06
	Deflection Coefficient,002364				Deflection Coefficient, .002760		

Safe loads given include weight of channel. Maximum fiber strain, 16,000 lbs. per square inch. Deflection of channel, in inches, under tabularload, equals the product of the Deflection Coefficient by the square of the span, in feet.

THE PASSAIC ROLLING MILL COMPANY. 85

SAFE LOADS, UNIFORMILY DISTRIBUTED, FOR PASSAIC STEEL CHANNELS,

In tons of 2000 lbs .,
CHANNELS BEING SECURED AGAINST YIELDING SIDEWAYS.

$\begin{gathered} \text { Span, } \\ \text { in } \\ \text { ineet. } \end{gathered}$	$\begin{aligned} & 5^{\prime \prime} \\ & 9 \text { Lbs. } \\ & \text { per Ft. } \end{aligned}$	$\begin{aligned} & 5^{\prime \prime \prime} \\ & 6 \text { Lbs. } \\ & \text { per Ft. } \end{aligned}$		$\begin{aligned} & 4^{\prime \prime} \\ & 8 \text { Lbs. } \\ & \text { per Ft. } \end{aligned}$	$\begin{aligned} & 4^{\prime \prime} \\ & 5 \text { Lbs. } \\ & \text { per Ft. } \end{aligned}$	
5	4.12	2.78	0.26	2.91	1.92	0.21
6	3.43	2.32	0.22	2.42	1.60	0.18
7	2.94	1.99	0.19	2.08	1.37	0.15
8	2.58	1.74	0.17	1.82	1.20	0.13
9	2.29	1.54	0.15	1.62	1.07	0.12
10	2.06	1.39	0.13	1.46	. 96	0.11
11	1.87	1.26	0.12	1.32	. 87	0.10
12	1.71	1.16	0.11	1.21	. 80	0.09
13	1.58	1.07	0.10	1.12	. 74	0.08
14	1.47	. 99	0.09	1.04	. 69	0.08
15	1.37	. 93	0.09	. 97	. 64	0.07
16	1.29	. 87	0.08	. 91	. 60	0.07
17	1.21	. 82	0.08	. 86	. 56	0.06
18	1.14	. 77	0.07	. 81	. 53	0.06
19	1.08	. 73	0.07	. 77	. 50	0.06
20	1.03	. 70	0.07	. 73	. 48	0.05
21	. 98	. 66	0.06	. 69	. 45	0.05
22	. 94	. 63	0.06	. 66	. 44	0.05
23	. 90	. 60	0.06	. 63	. 42	0.05
24	. 86	. 58	0.06	. 61	. 40	0.04
25	. 82	. 56	0.05	. 58	. 38	0.04

Deflection Coefficient, .00331

Deflection Coefficient, . 00414

Safe loads given include weight of channel. Maximum fiber strain, 16,000 lbs. per squareinch. Deflection of channel, ininches, under tabularload equals the product of the Deflection Coefficient by the square of the span, in feet.

MAXIMUM SAFE SHEAR FOR PASSAIC STEEL I BEAMS,

And Corresponding Minimum Spans

for Greatest Safe Uniformly Distributed Loads.

Depth Beam, Ins.	Weight per Foot, Pounds.	Maximum Safe Shear, Pounds.	$\begin{aligned} & \text { Mini- } \\ & \text { mum } \\ & \text { Span, } \\ & \text { Feet. } \end{aligned}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { Beam, } \\ \text { Ins. } \end{gathered}$	Weightper Foot Pounds.	Maximum Safe Shear, Pounds.	$\begin{aligned} & \text { Mini- } \\ & \text { mum } \\ & \text { Span, } \\ & \text { Feet. } \end{aligned}$
20	90	133,000	6.0	10	30	40,0100	3.6
"	85	128,000	5.8	"	27	31,200	4.4
"	80	113,000	6.3	/	25	24,500	5.3
"	75	106,000	6.3				
"	70	85,600	7.5 8.8	${ }^{\prime \prime}$	33 30	42,800 33,200	3.4 4.2
"	65	69,800	8.8	"	${ }_{27}$	23,300	5.6
18	80	108,000	6.2	"	25	32,000	3.4
"	75	92,000	7.0	"	$23 \frac{1}{3}$	27,000	3.9
"	70	97,500	5.9	"	21	19,100	5.2
"	65	95,000	5.5 6.5				
"	60	77,000	6.5 7.8	"	27 25	36,200 29,200	2.9 3.4
"	55	61,000		"	22	19,600	3.7
15	75	112,000	4.6	"	20	22,200	3.6
"	70	97,800	5.0	"	18	16,000	4.7
"	65	81,400	7.0	7	22	23,200	3.3
"	55	69,400	5.7	"	20	17,200	4.2
"	50	52,600	7.2	"	$17 \frac{1}{2}$	21,600	2.8
"	45	53,600	5.9	"	15	13,200	4.3
"	42	43,500	7.0	6	20	29,100	1.9
12	65	101,000	3.5	"	1712	21,000	2.4
"	60	85,200	3.9	"	15	13,300	3.5
"	55	69,800	4.6	"	12	11,200	3.5
"	50	70,800	4.0				
"	45	54,000	4.9	5	15	18,400	2.0
"	40	38,100	6.6	"	13	12,100	2.8
"	35	44,300	4.7	"	12	16,200	1.8
"	$31 \frac{1}{2}$	32,200	6.1	"	93	9,300	2.8
10	40	54,200	3.5	4	10	15,200	1.2
"	35	38,200	4.6	"	$7 \frac{1}{2}$	7,400	2.1
"	33	31,700	5.4	"	6	6,500	1.9

Beams and channels on short spans fully loaded are liable to fail by crippling of the web. The maximum safe shear is obtained from the following formula :

$$
\text { Maximum Safe Shear }=\frac{10000 d t}{1+\frac{\hbar^{2}}{3000 t^{2}}}
$$

where $d=$ depth of beam, $t=$ thickness of web and $h=$ clear distance between flanges, all dimensions in inches.

MAXIMUM SAFE SHEAR FOR PASSAIC STEEL CHANNELS,

And Corresponding Minimum Spans

for Greatest Safe Uniformly Distributed Loads.

Depth of Channel, Ins.		Maximum Safe Shear, Pounds.	$\begin{aligned} & \text { Mini- } \\ & \text { mum } \\ & \text { Span, } \\ & \text { Speen. } \end{aligned}$	$\begin{gathered} \text { Depth } \\ \text { of } \\ \text { Chan- } \\ \text { nel, } \\ \text { Ins. } \end{gathered}$	Weight per Foot, Pounds.	Maximum Safe Shear, Pounds.	$\begin{aligned} & \text { Mini- } \\ & \text { mum } \\ & \text { Span, } \\ & \text { Feet. } \end{aligned}$
15	50	98,600	2.9	8	12	17,600	2.4
"	45	8:3,800	3.1	"	11	15,000	2.6
"	40	67,200	3.6	"	10	11,400	3.3
:	35	50,700	4.4				
"	33	43,800	4.9	7	17	29,900	1.5
12	35	63,000			15	23,200	2.0
"	33	56,400	2.9	"	12	17,700	1.7
"	30	45,800	3.3	"	10	13,800	2.2
"	27	36,600	3.9	"	9	10,700	2.7
"	25	38,900	3.3				
"	23	32,200	3.7	6	20	31,100	1.6
"	20	22,700	4.9	"	18	25,000	1.9
				"	17	21,800	2.1
10	30	56,300	2.1	"	15	24,800	1.5
"	25	41,300	2.5	"	13	18,500	1.9
"	20	24,800	3.7	"	12	15,300	2.2
"	18	25,500	3.1	"	10	16,400	1.6
"	17	22,200	3.4	"	9	13,200	1.8
"	15	17,700	4.0	"	8	9,900	2.3
9	21	36,900	2.2	5	12	20,800	1.2
"	18	27,100	2.7	"	10	14,700	1.5
"	16	20,300	3.3	"	9	11,600	1.8
"	15	22,000	2.7	"	8	14,100	1.2
"	14	18,000	3.1	"	6	7,600	1.8
"	13	14,900	3.6				
				4	10	16,500	1.0
8	17	29,300	1.9	"	8	10,400	1.4
"	15	22,300	2.3	"	6	9,000	1.2
"	13	16,100	2.9	"	5	6,100	1.6

The maximum safe uniformly distributed load on beams or channels for any span less than the minimum span given must not exceed twice the safe shear. The maximum safe load concentrated at the center of a span must also not exceed twice the safe shear given, and the corresponding limiting span will be one half the minimum span given in the tables. Heavy ${ }^{2}$ loads concentrated at the ends of beams must not produce a shear or reaction exceeding the safe allowable shear as given.
SAFE LOADS，UNIFORMLY DISTRIBUTED，FOR PASSAIC STEEL THAPES，EQUAL LEGS，

20
8
$8=1$
8

$-$
Deflec－

$$
\left.\begin{array}{|c|}
10 \\
7
\end{array} \right\rvert\,
$$ In tons of 2000 lbs ．，Tees having stem vertical and being secured argainst yielding sideways．

Distances between Supports, in Feet.
$-7{ }^{-72}$
0012
すロロール The loads given to the right of the
zigzag line produce deflections ex－
cceding $x=360$ of the span．ت

[^0]| | $\begin{array}{rr} 0 & 4 \\ \therefore 20 \\ -0 & 0 \end{array}$ | | $\begin{array}{lll} 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$ | $\begin{aligned} & 12 \\ & 0 \\ & 0 \end{aligned}$ | | $\begin{array}{ll} 10 & 10 \\ 10 \\ 00 \\ 60 \end{array}$ | $\begin{aligned} & 196 \\ & 19 \\ & -10 \\ & -10 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\sim \infty$ | ${ }^{\text {a }}$（ \times | | 成象 | －it | －id | N－ |

Safe loads include weight of Tees．Maximum fiber strain of $16,000 \mathrm{lbs}$ ．per square inch
Deflection of Tees，in inches，under tabular loads is equal to the product of the Deflection
Defiection of lees，in inches，under tabular loads is equal to the product of the Deflection Coefficient by the square of the span，in feet．
SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL TTHAPES, UNEQUAL LEGS,

In tons of 2000 lbs ., Tees having stem vertical and being secured against yielding sideways. | Deflec- |
| :---: |
| tion |
| Coeff. |

 0000001

 The loads given to the right
 span.
Safe loads given include weight of Tees. Maximum fiber strain of $16,000 \mathrm{lbs}$. per square inch.
Deflection of Tees, in inches, under tabular loads is equal to the product of the Deflection Coefficient by the square of the span, in feet.
URIM n tons of 2000 lbs., Tecs having stem vertical and being secured gainst yielding sider.
Distance between Supports, in Feet.

5	6	7	8	9	10

 $\left\lvert\, \begin{array}{ll}90 & 9 \\ 000 & 0 \\ 0 & 0\end{array}\right.$ 0.43 1 8 0.76
0.87

H 1 | 30 |
| :--- |
| 20 |

 0.48

∞	
C	
T	

\qquad \vec{S}
0
10
10
0
8
0
0 12
0
0
0
0
0
0
 0
000
00 -昭 -
\square re inch

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL ANGLES,

 EQUAL LEGS, IN TONS OF 2,000 LBS.,Angles being secured against yielding sideways.

			Span in feet.								
			2	3	4	5	6	8	10	12	
6×6	$\frac{7}{8}$	43.6	21.8	14.5	10.9	8.71	7.26	5.44	4.36	3.63	0020
6×6	$\frac{3}{8}$	18.8	9.38	6.25	4.69	3.75	3.13	2.34	1.88	1.56	0019
5×5	${ }^{3}$	25.5	12.8	8.50	6.38	$\overline{5.10}$	4.25	$\overline{3.19}$	2.55	2.13	. 0024
5×5	$\frac{3}{8}$	12.9	6.45	4.30	3.23	2.58	2.15	1.61	1.29	1.08	. 0023
4×4	123	17.7	8.85	5.90	4.43	3.54	2.95	2.21	1.77	1.48	. 0031
4×4	$\frac{5}{16}$	6.90	3.45	2.30	1.73	1.38	1.15	. 86	. 69	. 58	. 0029
$3 \frac{1}{2} \times 3 \frac{1}{2}$	$\frac{5}{8}$	9.65	4.83	3.22	2.41	1.93	1.61	1.21	. 97	. 80	. 0035
$\frac{3 \frac{1}{2} \times 3 \frac{1}{2}}{3}$	$\frac{5}{16}$	5.20	2.60	1.73	1.30	1.04	. 87	. 65	. 52	. 43	. 0033
3×3	$\frac{5}{8}$	7.90	3.95	2.63	1.99	1.58	1.32	. 99	. 79	. 66	. 0042
3×3	$\frac{1}{4}$	3.10	1.55	1.03	. 77	. 62	. 52	. 39	. 31	. 26	. 0038
$2 \frac{1}{2} \times 2 \frac{1}{2}$	$\frac{1}{2}$	4.08	2.04	1.36	1.02	. 82	. 68	. 51	. 41	. 34	. 0049
$2 \frac{1}{2} \times 2 \frac{1}{2}$	$\frac{1}{4}$	2.14	1.07	. 71	. 54	. 43	. 36	. 27	. 21	. 18	. 0047
$2 \frac{1}{4} \times 2 \frac{1}{4}$	$\frac{1}{2}$	3.47	1.74	1.16	. 87	. 69	. 58	. 43	. 35	. 29	. 0056
$2 \frac{1}{4} \times 2 \frac{1}{4}$	$\frac{3}{16}$	1.30	. 65	. 43	. 32	. 26	. 22	. 16	. 13	. 11	. 0051
2×2	$\frac{1}{2}$	2.72	1.36	. 91	. 68	. 54	. 45	. 34	. 27		. 0065
2×2	$\frac{3}{16}$	1.02	. 51	. 34	. 25	. 20	. 17	. 13	. 10		. 0058
$1 \frac{3}{4} \times 1 \frac{3}{4}$	$\frac{7}{16}$	1.73	. 86	. 57	. 43	. 35	. 29	. 22	. 17		. 0073
$1 \frac{3}{4} \times 1 \frac{3}{4}$	$\frac{3}{16}$. 75	. 37	. 25	. 19	. 15	. 12	. 09	. 07		. 0067
$1 \frac{1}{2} \times 1 \frac{1}{2}$	$\frac{3}{8}$	1.00	. 50	. 33	. 25	. 20	. 17	. 13	. 10		. 0084
$1 \frac{1}{2} \times 1 \frac{1}{2}$	$\frac{1}{16}$. 56	. 28	. 19	. 14	. 11	. 09	. 07	. 06		. 0078
$1 \frac{1}{4} \times 1 \frac{1}{4}$	$\frac{5}{16}$. 69	. 34	. 23	. 17	. 14	. 11	. 09	. 07		. 0105
$1 \frac{1}{4} \times 1 \frac{1}{4}$	$\frac{1}{8}$. 26	. 13	. 09	. 07	. 05	. 04	. 03	. 03		. 0092
1×1	$\frac{1}{4}$. 34	. 17	. 11	. 08	. 07	. 06	. 04			. 0129
1×1	$\frac{1}{8}$. 17	. 08	. 06	. 04	. 03	. 03	. 02			. 0118
$\frac{7}{8} \times \frac{7}{8}$	$\frac{3}{1} 6$. 18	. 09	. 06	. 04	. 04	. 03				. 0141
$\frac{7}{8} \times \frac{7}{8}$	$\frac{1}{8}$. 12	. 06	. 04	. 03	. 024	. 02				. 0132
$\frac{3}{4} \times \frac{3}{4}$	$\frac{3}{16}$. 13	. 06	. 04	. 03	. 03					. 0169
$\frac{3}{4} \times \frac{3}{4}$	$\frac{1}{8}$.09	. 05	. 03	022	. 018					. 0159

Safe loads given include weight of angle. Maximum fiber strain, 16,000 lbs. per sq. in.

Safe loads for intermediate spans can be obtained by dividing the coefficient of strength by the span, in feet.

Loads given to the right of the zigzag line produce deflections exceeding $\frac{1}{36}{ }^{\frac{1}{6} 0}$ of the span. Deflections, in inches, under tabular loads, can be obtained by multiplying the Deflection Coefficient by the square of the span, in feet.

THE PASSAIC ROLLING MILL COMPANY. 91

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL ANGLES,

UNEQUAL LEGS, IN TONS OF 2,000 LBS.
Long Leg Vertical.
Angles being secured against yielding sideways.

			Span in feet.								
			2	3	4	5	6	8	10	12	
6×4	$\frac{7}{8}$	42.1	21.0	. 01				5.26	4.21	. 50	
6×4	$\frac{3}{8}$	17.7	8.85	. 90	4.		. 95	2.21	77	1.48	0020
$5 \times 3 \frac{1}{2}$	$\frac{3}{4}$	24.2	12.1	. 056			4.03	3.02	2.42	2.01	. 0026
$5 \times 3 \frac{1}{2}$	$\frac{3}{8}$	12.2	6.10	4.073	3.0	. 44	. 0	1.5	1.22	1.02	. 0024
5×3	$\frac{3}{4}$	24.3	12.1	8.086	6.064	. 85	4.0	3.03	. 4	2.02	.0027
5×3	$\frac{5}{16}$	10.1	5.03	. 35	2.51	. 01	1.68	1.26	1.01	. 84	. 0025
$4_{4}^{1} \times 3$	${ }^{3}$	19.1	9.55	6.37	4.78	3.82	3.18	2.39	1.91	1.59	. 0029
$4 \frac{1}{2} \times 3$	${ }^{5}$	8.2	4.10	\%	2. 05	. 64	1.37	1.03	. 82	. 68	0027
$4 \times 3 \frac{1}{1}$	$\frac{3}{4}$	15.7	7.85	5.23	3.	3.14	2.62	1.96	1.57	1.31	. 0031
$4 \times 3 \frac{1}{2}$	$\frac{5}{16}$	6.6	3.30	2.201	1.65	1.32	1.10		. 66	. 55	. 0029
4×3	$\frac{5}{8}$	12.3	6.15	4.103	3.08	2.46	2.05	1.54	1.23	. 03	. 0032
4×3	$\frac{5}{16}$	6.55	3.28	181	1.64	. 31	1.09	. 82	. 66	55	. 0030
$3 \frac{1}{2} \times 3$	$\frac{5}{8}$	9.38	4.69	3.12	2.34	1.87	1.56	1.17	. 94	. 78	. 0036
$3_{2}^{1} \times 3$	$\frac{5}{16}$	5.11	2.56	1.701	1.281	1.02	. 85	. 64	8		. 0034
$3 \frac{1}{3} \times 2 \times 2$	$\frac{9}{15}$	8.64	4.32	1.88	1.161	1.73	1.44	1.08	. 86	. 33	. 0037
$3 \frac{1}{2} \times 2 \frac{1}{2}$	1	4.00	2.00	1.33	1.00	. 80	. 67	. 50	40	. 33	35
3	$\frac{9}{16}$	6.45	3.23	2.151	1.61	1.29	1.08	. 81	. 65	. 54	. 0042
$3 \times 2{ }^{\frac{1}{2}}$	1	2.99	1.49	. 99	. 75	. 60	. 50	. 37	. 30	. 25	. 0040
3×2	2	5.34	2.67	1.78	1.44	1.07	. 89	. 67	. 53	. 44	. 0043
3×2	$\frac{1}{4}$	2.88	1.44	. 96	. 72	. 58	. 48	. 36	. 29	24	0041
2I $\times 2$	$\frac{1}{1}$	4.00	2.00	1.33	1.00	. 80	. 67	. 50	. 40	. 33	0050
$2 \frac{1}{2} \times 2$	${ }^{\frac{1}{6}}$	1.57	. 79	. 52	. 39	. 31	. 26	. 20	. 16	. 13	0048
$2{ }^{\frac{1}{4} \times 1} \times 1 \frac{1}{2}$	$\frac{5}{16}$	1.97	. 99	. 66	. 49	. 39	. $3: 3$. 25	. 20	. 16	0057
$2{ }^{\frac{1}{4} \times 1 \times 1}$	${ }^{1} 8$	1.23	61	. 41	. 31	. 25	20	. 15	. 12	10	0055
$2 \times 1 \frac{3}{4}$	$\frac{5}{16}$	1.60	. 80	. 53	. 40	. 32	. 27	20	. 16	1.	0061
$2 \times 1 \frac{3}{4}$	$\frac{3}{16}$	1.01	. 50	. 34	. 25	. 20	. 17	. 13	. 10	. 08	0059
$\overline{18} \times 1$	$\frac{5}{16}$. 77	. 39		19		. 13	. 10	. 08		. 0096
$1 \frac{3}{8} \times 1 \frac{1}{8}$	1	. 31	. 15	. 10	. 08	. 06	. 05	04	. 03		$.0087$

Safe loads given include weight of angle. Maximum fiber strain, 16,000 lbs. per sq. in.

Safe loads for intermediate spans can be obtained by dividing the coefficient of strength by the span, in feet.
Loads given to the right of the zigzag line produce deflections exceeding $\frac{1}{36 \pi}$ of the span. Deflections, in inches, under tabular loads, can be obtained by multiplying the Deflection Coefficient by the square of the span, in feet.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSSAIC STEEL ANGLES,

UNEQUAL LEGS, IN TONS OF 2,000 LBS.
Short Leg Vertical. Angles being secured against yielding sideways.

		$\begin{aligned} & \text { 4. } \\ & 0 . ~ \\ & \text { E. } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Span in feet.								
			2	3	4	5	6	8	10	12	
6×4	$\frac{7}{x}$	20.5	10.3	6.83	. 13	4.10	3.41	2.56	2.05	1.71	. 0029
6×4	$\frac{3}{8}$	8.50	4.25	2.83	2.13	1.70	1.42	1.06	. 85	. 71	. 0027
5×31	$\frac{3}{4}$	12.75	6.38	4.25	$\overline{3.19}$	2.55	2.13	1.59	1.23	1.06	.0034
5×3 㐌	$\frac{3}{8}$	6.45	3.23	2.15	1.61	1.29	1.08	. 81	. 64	. 54	. 0031
5×3	$\frac{3}{4}$	9.85	4.93	3.28	2.46	1.97	1.64	1.23	. 99	. 82	. 0039
5×3	-	3.93	2.00	1.33	1.00	. 80	. 67	. 50	. 40	. 33	. 0036
$4 \frac{1}{2} \times 3$	$\frac{3}{4}$	9.33	4.66	3.11	2.33	1.87	1.55	1.17	. 93	. 78	. 0040
$4 \frac{1}{2} \times 3$	$\frac{5}{16}$	3.99	2.001	1.33	1.00	. 80	. 67	. 50	. 40	. 33	. 0036
4×3		12.4	6.20	413	3.10	$\underline{2.48}$	2.07	1.55	1.24	$\overline{1.03}$. 0035
$4 \times 3 \frac{1}{2}$		5.3	2.651	1.77	1.33	1.06	. 88	. 66	. 53	. 44	. 0032
4×3		6.8	3.40	2.27	1.70	1.36	1.13	. 85	. 68	. 57	. 0039
4×3	$\frac{15}{15}$	3.95	1.971	1.32	. 99	. 79	. 66	. 49	. 40	. 33	. 0037
$3 \frac{1}{2} \times 3$	5	7.04	3.52	2.35	1.76	1.41	1.17	. 88	. 70	. 59	. 0040
$3 \frac{1}{2} \times 3$	$\frac{5}{16}$	3.84	1.921	1.28	. 96	. 77	. 64	. 48	. 38	. 32	. 0038
$3 \frac{1}{2} \times 2 \frac{1}{2}$	${ }^{\frac{9}{16}}$	4.75	2.371	1.58	1.19	. 95	. 79	. 59	. 48	. 40	. 0047
$3 \frac{1}{2} \times 2{ }^{1}$	$\frac{1}{4}$	2.19	1.09	. 73	. 55	. 44	. 36	. 27	. 22	. 18	. 0044
$3 \times 2 \frac{1}{2}$	$\frac{7}{16}$	4.59	2.29	1.53	1.15	. 93	. 76	. 57	. 46	. 38	. 0048
$3 \times 2 \frac{1}{2}$	1	2.13	1.07	. 71	. 53	. 43	. 36	. 27	. 21	. 18	. 0045
3×2	$\frac{1}{2}$	2.51	1.25	. 83	. 63	. 50	. 42	. 31	. 25	. 21	. 0058
3×2	$\frac{1}{4}$	1.39	. 69	. 46	. 35	. 28	. 23	. 17	. 14	. 12	.0055
$2 \frac{1}{2} \times 2$	$\frac{1}{2}$	2.45	1.23	. 82	. 61	. 49	. 41	. 31	. 25		. 0060
$2 \frac{1}{2} \times 2$	${ }^{3} 18$	1.05	. 52	. 35	. 26	. 21	. 17	13	. 10		. 0056
$2{ }^{\frac{1}{4} \times 1 \frac{1}{2}}$	$\frac{5}{16}$. 96	. 48	. 32	. 24	. 19	. 16	. 12	. 10		.0077
$2 \frac{1}{4} \times 1 \frac{1}{2}$	$\frac{3}{16}$. 59	. 29	. 19	. 15	. 12	. 10	. 07	. 06		. 0073
$2 \times 1 \frac{3}{4}$	$\frac{5}{1-\frac{5}{16}}$	1.23	. 61	. 41	. 31	. 25	. 20	. 15	. 12		. 0067
$2 \times 1 \frac{3}{4}$	$\frac{3}{16}$. 80	. 40	. 27	. 20	. 16	. 13	. 10	. 08		. 0065
$1 \frac{3}{8} \times 1 \frac{1}{8}$	$\frac{5}{16}$. 53	. 67	. 18	. 13	. 11	. 09	. 07			. 0111
$1 \frac{3}{x} \times 1 \frac{1}{8}$	$\frac{1}{x}$. 21	. 11	. 07	. 05	. 04	. 04	. 03			. 0099

Safe loads given include weight of angle. Maximum fiber strain, 16,000 lbs. per sq. in.

Safe loads for intermediate spans can be obtained by dividing the coefficient of strength by the span, in feet.

Loads given to the right of the zigzag line produce deflections exceeding ${ }^{\frac{1}{6} 60}$ of the span. Deflections, in inches, under tabular loads, can be obtained by multiplying the Deflection Coefficient by the square of the span, in feet.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL Z BARS,

IN TONS OF 2000 LBS.
Web vertical. $\quad Z$ bars being secured against yielding sideways.

Size of Z bar, Ins.	Thick ness, Ins.		Span in feet.								
			2	3	4	5	6	8	10	12	
6	$\frac{3}{8}$	45.0	22.5	15.0	11.2	9.00	7.50	5.62	4.50	3.75	. 0028
$6 \frac{1}{16}$	$\frac{7}{16}$	52.4	26.2	17.5	513.1	10.5	8.73	6.55	5.24	4.37	. 0027
$6 \frac{1}{8}$		59.9	29.91		14.9	11.9	9.98	7.49	5.99	4.99	. 0027
6		61.6	30.8	$\overline{20.5}$	15.4	12.3	$\overline{10.3}$	7.70	$\overline{6.16}$	$\overline{5.13}$	0028
6_{1}		68.4	34.2	22.8	17.1	13.7	11.4	8.55	6.84	5.70	. 0027
$6 \frac{1}{8}$		75.2	37.6	25.	18.8	15.0	12.5	9.40	7.52	6.27	. 0027
6	4	75.0	37.5	25.0	$\overline{18.8}$	15	12.6	9.38	7.50	$\overline{6.25}$. 0028
6_{1}		81.2	40.6	27.1	20.3	16.	13.5	10.2	8.12	6.77	. 0027
$6 \frac{1}{8}$		87.5	43.8	29.2	21.9	17.	14.	10.9	8.75	7.29	. 0027
		28.5	14.3	9.5	. 1	5.	4.75	3.56	2.85	2.38	. 0033
		34.1	17.1	11.4	8.52	6.82	5.67	4.2	3.41	2.84	. 0033
$5{ }^{\frac{1}{8}}$	$\frac{7}{16}$	39.7	19.9	13.2	9.92	7.94	6.62	4.96	3.97	3.31	. 0032
5	2	41.0	20.5	13.7	10.2	8.20	6.83	$\overline{5.13}$	4.10	3.42	. 0033
5_{y}		46.0	23.0	15.3	11.5	9.20	7.67	5.75	4.60	3.83	. 0033
$5 \frac{1}{8}$		51.1	25.6	17.0	12.	10.2	8.52	6.39	5.11	4.26	. 0032
5	$\frac{11}{16}$	50.5	25.3	16.8	12.	10.1	8.42	$\overline{6.31}$	5.05	4.21	. 0033
$5 \frac{1}{1}$	${ }^{\frac{3}{4}}$	55.2	27.6	18.4	13.	11.0	9.20	6.90	5.52	4.60	. 0033
$5 \frac{1}{8}$	1	61.0	30.5	20.3	15	12.	10.2	7.63	6.10	5.10	. 0032
		16.8			4.		2.80	2.10			041
$4 \frac{1}{11}$	$\frac{5}{16}$	20.9	10.5	6.97	5.22	4.	3.48	2.61	2.09	1.74	. 0041
$4 \frac{1}{8}$	\%	24.9	12.	8.30	6.22	4.	4.15	3.11	2.49	2.08	. 0040
		25.8	12.9				4.30	3.23	2.5	2.15	. 0041
$4 \frac{1}{1}$	$\frac{1}{2}$	29.4	14.7	9.80	7.35	5.88	4.90	3.68	2.94	2.45	. 0041
$4 \frac{1}{8}$	16	33.0	16.5	11.0	8.25	6.60	5.50	4.13	3.30	2.75	. 0040
4	${ }^{\frac{5}{8}}$	32.3	16.2	10.	8.04	6.46	5.38	4.04	$\overline{3.23}$	2.69	0041
4	$\frac{11}{16}$	35.5	17.8	11.8	8.88	7.10	5.92	4.88	3.55	2.96	. 0041
$4 \frac{1}{8}$	$\frac{3}{4}$	38.7	19.4	12.9	9.68	7.76	6.45	4.84	3.87	3.23	. 0040
3	4	10.3	5.15	3.43	2.58	$\overline{2.06}$	1.72	1.29	1.03	. 86	. 0055
$3 \frac{1}{16}$	$\frac{5}{16}$	12.7	6.35	4.23	3.18	2.54	2.12	1.59	1.27	1.06	. 0054
3	$\frac{3}{8}$	13.7	6.85	4.57	3.42	2.74	2.28	1.71	1.37	1.01	. 0055
$3 \frac{1}{16}$	$\frac{7}{16}$	15.9	7.95	5.30	3.98	3.18	2.65	1.99	1.59	1.33	. 0054
8	$\frac{1}{2}$	16.3	8.15	5.43	4.0	3.	2.72	2.04	1.63	1.36	. 0055
$3 \frac{1}{16}$	16 ${ }^{9}$	18.3	9.15				3.05	2.29	1.83	1.53	. 0054

[^1]
BEAM GIRDERS.

It frequently happens in building construction that a single I beam is insufficient to carry the imposed load. Where heavy loads, such as brick walls, vaults, etc., are to be supported, a single \mathbf{I} beam is inadequate and two or more beams are used side by side, bolted together with cast iron or steel separators, as shown on page 38, Figs. 7, 8, and 9. These separators serve to hold the compression flanges of the beams in position to prevent deflection sideways, and also, in a measure, to cause the beams to act together and distribute the load uniformly on the component beams of the girder. Separators should be provided at the supports and at points where heavy loads are imposed and at intervals of not exceeding 6 feet. A table is given on page 44 by which the approximate weights of separators can be obtained for any size and width of beam girders.

In designing floors for buildings, it is desirable to have a minimum number of interior supporting columns consistent with economy, and a beam girder, consisting of a pair of \mathbf{I} beams, is frequently advantageous for supporting the steel floor joists as in Figs. I and 3 on page 38.

Girders, composed of two or more \mathbf{I} beams, are commonly used to span openings in brick walls. If the wall to be supported is thoroughly seasoned and without openings, the weight carried by the girder can safely be assumed to that of a rectangle of wall having a length equal to the opening and a height of $\frac{1}{3}$ of the opening; for, if the girder should fail, the line of rupture of the brickwork would be found within this rectangle. If the wall is newly built, or if it has openings for windows or other purposes, the girder must be designed to carry the entire wall above the girder and between the supports.

In obtaining the weight of brick walls, it is customary to assume a cubic foot of brickwork as weighing 120 lbs . The weights, per superficial square foot, for different walls, are,

$8^{\prime \prime}$ wall,	80 lbs .	$20^{\prime \prime}$ wall	200 lbs .
$12^{\prime \prime}$	120 "	$24^{\prime \prime}$ " ${ }^{\prime \prime}$	240
$16^{\prime \prime}$		$28^{\prime \prime}$	280

When walls are faced with stone, the weight of the stonework, taken at 160 lbs . per cubic foot, must be added. If the walls are plastered, add 5 lbs . per square foot for the weight of the plastering.

STEEL BEAM BOX GIRDERS.

A box girder consisting of a pair of steel \mathbf{I} beams, with top and bottom flange plates, furnishes an economical girder for short spans. The flange plates are riveted to the beams with $\frac{3}{4}{ }^{\prime \prime}$ diameter rivets spaced from $6^{\prime \prime}$ to $9^{\prime \prime}$ centers. In short girders, care must be taken to have a sufficient number of rivets in each plate, between the end of the girder and the center of span, to develop the full tensile or compressive strength of the plate.

The safe loads in the following tables have been computed from the moments of inertia of the sections, deducting the rivet holes in each flange. A maximum fiber strain of $15,000 \mathrm{lbs}$. per square inch is used, instead of the $16,000 \mathrm{lbs}$. fiber strain allowed on rolled beams, to allow for the injury to the strength of the material due to punching the holes for the rivets.

Suppose it is required to select a beam box girder to safely support a load of 45 tons, including the weight of the girder itself, over a span of 25 feet. By referring to the tables it will be found that a girder, composed of two $15^{\prime \prime} \times 42 \mathrm{lb}$. I beams with flange plates $14^{\prime \prime} \times \frac{5^{\prime \prime}}{8}$, has a safe load of only 40.0 tons on this span; but each $\frac{1}{16}$ " increase in thickness of flange plates adds 2.16 tons to the safe load, so that the flange plates would require to be $\frac{3}{16}{ }^{\prime \prime}$ thicker, or $\frac{13{ }^{\prime \prime}}{16}$ for each plate.

The deflection of the girder under this load, in inches, would be obtained by multiplying the Deflection Coefficient by the square of the span in feet; or,

$$
.00102 \times \overline{25}^{2}=0.64^{\prime \prime}
$$

STEEL BEAM BOX GIRDERS．

Safe Loads，in Tons of 2000 Lbs．，Uniformly Distributed． $2-12^{\prime \prime}$ Steel I Beams and 2 Steel Plates $14^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime}$

	Safe Loads， includ＇g Wgt． of Girder， in Tons． in Tons．	Inc．in Safe Load for $\frac{1}{16}$ In． Increase in Thickness of Flange Plates．	Safe Loads， includ＇g Wgt． of Girder， in Tons．	Inc．in Safe Load for 1 in in． Increase in Thickness of Flange Plates．	
12	61.8	3.61	55.3	3.65	
13	57.0	3.33	51.0	3.37	
14	53.0	3.09	47.4	3.13	
15	49.5	2.89	44.2	$\stackrel{2.92}{2 .}$	\％
16	46.4	${ }_{2}^{2.71}$	41.5	2.74	辰法
17	43.6	2.55	39.0	2.58	边云
18 19	41.2 39.0	2.41 2.28	36.8 34.9	2.43 2.31	．${ }^{\text {¢ }}$
20	37.1	2.17	33.2	2.19	
21	35.3	2.06	31.6	2.09	－
22	33.7	1.97	30.2	1.99	등
23	32.3	1.88	28.8	1.90	¢．
24	30.9	1.80	27.6	1.83	㟔
25	29.7	1.73	26.5	1.75	\％
26	28.5	1.67	25.5	1.68	O
27	27.5	1.60	24.6	1.62	它范
28	26.5	1.55	23.7	1.56	H ${ }_{\text {¢ }}$
29	25.6	1.49	22.9	1.51	云 ${ }_{\text {E }}$
30	24.7	1.44	22.1	1.46	
31	23.9	1.40	21.4	1.41	\％
32	23.2	1.35	20.7	1.37	． 5
33	${ }_{21}^{22.5}$	1.31	20.1 19.5	1.33 1.29	．
34 35	${ }_{21.2}^{21.8}$	1.27	19.5 19.0	1.25	边：
36	20.6	1.20	18.4	1.22	${ }_{\underline{\circ}}$
37	20.1	1.17	17.9	1.18	
38	19.5	1.14	17.0	1.15	
39	19.0	1.11	17.0	1.12	
	Wgt．per lineal ft．of girder， includ＇g rivet heads＝ 13 rlbs ．		Wgt．per lineal ft．of girder， includ＇g rivet heads＝ri5 lbs．		

Maximum fiber strain of 15,000 lbs．per square inch；holes for $\frac{3 / \prime}{4}$ rivets in both flanges deducted．

Deflection，in inches，under tabular loads，equals the product of the Deflection Coefficient by the square of the span，in feet．

STEEL BEAM BOX GIRDERS．

Safe Loads，in Tons of 2000 Lbs．，Uniformly Distributed． $2-15^{\prime \prime}$ Steel \mathbf{I} Beams and 2 Steel Plates $14^{\prime \prime} \times \frac{5{ }^{\prime \prime}}{8}$ ．

					$\text { Deflection Coefficient }=.00102$
	Safe Loads， includ＇g Wgt． of Girder， in Tons．	Inc．in Safe Load for $\frac{1}{16} \mathrm{in}$ ． Increase in Thickness of Flange Plates．	Safe Loads， includ＇g Wgt． of Girder， in Tons．	Inc．in Safe Load for $\frac{1}{16}$ in． Increase in Thickness of Flange Plates．	
12	105.3	4.32	83.4	4.49	
13	97.2	3.99	77.0	4.15	
14	90.3	3.71	71.5	3.85	
15	84.3	3.46	66.7	3.59	
16	79.0	3.24	62.6	3.37	－
17	74.4	3.05	58.9	3.17	\％
18	70.2	2.88	55.6	2.99	¢
19	66.5	2.73	52.7	2.83	． 5
20	63.2	2.60	50.1	2.69	－
21	60.2	2.47	47.7	2.57	है
22	57.5	2.36	45.5	2.45	－
23	55.0	2.26	43.5	2.34	亏
24	52.7	2.16	41.7	2.25	\％
25	50.6	2.08	40.0	2.16	¢
26	48.6	2.00	38.5	2.07	－
27	46.8	1.92	37.1	2.00	－
28	45.1	1.85	35.8	1.92	－
29	43.6	1.79	34.5	1.86	
30	42.1	1.73	33.4	1.80	
31	40.8	1.67	32.3	1.74	，⿹ㅏㅇㅢ
32	39.5	1.62	31.3	1.68	－
33	38.3	1.57	30.3	1.63	岩
34	37.2	1.53	29.4	1.59	－
35	36.1	1.48	28.6	1.54	\％
36	35.1	1.44	27.8	1.50	边
37	34.2	1.40	27.1	1.46	
38	33.3	1.37	26.3	1.42	
39	32.4	1.33	25.7	1.38	
40	31.6	1.30	25.0	1.35	
	Wgt．per lineal ft ．of girder． includ＇g rivet heads $=183 \mathrm{lbs}$ ．		Vgt．per lineal ft．of girder， includ＇g rivet heads $=147 \mathrm{lbs}$ ．		

Maximum fiber strains of $15,000 \mathrm{lbs}$ ．per square inch；holes for $\frac{3 / 4}{4}$ rivets in both flanges deducted．

Deflection，in inches，under tabular loads，equals the product of the Deflection Coefficient by the square of the span，in feet．

STEEL BEAM BOX GIRDERS．

Safe Loads，in Tons of 2000 Lbs．，Uniformly Distributed． $2-18^{\prime \prime}$ Steel I Beams and 2 Steel Plates $16^{\prime \prime} \times \frac{3}{4}{ }^{\prime \prime}$ ．

					Deflection Coefficient $=.00085$.
	Safe Loads， includ＇g Wgt． of Girder， in Tons．	Inc．in Safe Load for $\frac{1}{1 /}$ in． Increase in Thickness in Flange Plates．	Safe Loads， includ＇g Wgt． of Girder， in Tons．	Inc．in Safe Load for $\frac{1}{16}$ in Increase in Thickness in Flange Plates．	
12	154.9	6.29	141.5	6.37	
13	142.9	5.80	130.6	5.88	
14	132.7	5.39	121.3	5.46	
15	123.9	5.03	113.2	5.09	
16	116.1	4.72	106.1	4.77	．
17	109.3	4.44	99.9	4.49	\％
18	103.2	4.19	94.3	4.24	或。
19	97.8	3.97	89.4	4.02	氝
20	92.9	3.77	84.9	3.82	－${ }^{\text {¢ }}$
21	88.5	3.59	80.8	3.64	遈辰
22	84.5	3.43	77.2	3.47	－
23	80.8	3.28	73.8	3.32	－
24	77.4	3.14	70.7	3.18	砍
25	74.2	3.02	67.9	3.06	\％
26	71.5	2.90	65.3	2.94	边
27	68.8	2.79	62.9	2.83	吅岂
28	66.4	2.69	60.6	2.73	\％
29	64.1	2.60	58.5	2.63	는ㅁ
30	61.9	2.52	56.6	2.55	4
31	59.9	2.43	54.8	2.46	丞寅
32	58.1	2.36	53.1	2.39	．${ }_{6}^{60}$
33	56.3	2.29	51.4	2.32	3
34	54.7	2.22	49.9	2.25	告
35	53.1	2.16	48.5	2.18	－
36	51.6	2.10	47.2	2.12	号．
37	50.2	2.04	45.9	2.06	枵
38	48.9	1.98	44.7	2.01	品
39	47.6	1.93	43.5	1.96	
40	46.5	1.89	42.4	1.91	
	Wgt．per lineal ft．of girder， includ＇g rivet heads $=225 \mathrm{lbs}$ ．		Wgt．per lineal ft．of girder， includ＇g rivet heads $=195 \mathrm{lbs}$ ．		

Maximum fiber strains of $15,000 \mathrm{lbs}$ ．per square inch；holes for $\frac{3}{4}{ }^{\prime \prime}$ rivets in both flanges deducted．

Deflection in inches，under tabular loads，equals the product of the Deflection Coefficient by the square of the span，in feet．

STEEL BEAM BOX GIRDERS．

Safe Loads，in Tons of 2000 Lbs．，Uniformly Distributed．
$2-20^{\prime \prime}$ Steel I Beams and 2 Steel Plates $16^{\prime \prime} \times \frac{3}{4}{ }^{\prime \prime}$

	Safe Loads， includ＇g Wgt． of Girder， in Tons．	Inc．in Safe Load for $\frac{1}{16}$ in． Increase in Thickness of Flange Plates．	Safe Loads， includ＇g Wgt． of Girder， in Tons．	Inc．in Safe Load for $\frac{1}{16}$ in． Increase in Thickness of Flange Plates．	
14	154.3	6.01	144.1	6.06	
15	144.1	5.61	134.5	5.66	
16	135.1	5.26	126.1	5.30	Ξ
17	127.1	4.95	118.7	4.99	－
18	120.1	4.68	112.1	4.72	¢ู่
19	113.7	4.43	106.2	4.47	－
20	108.1	4.21	100.8	4.24	5
21	102.9	4.01	96.0	4.04	E딜
22	98.2	3.83	91.7	3.86	－100
23	93.9	3.66	87.7	3.69	ᄃ
24	90.0	3.51	84.0	3.54	\％゙った
25	86.4	3.37	80.7	3.40	ぐ5
26	83.1	3.24	77.6	3.26	\bigcirc
27	80.0	3.12	74.7	3.14	\％${ }_{\text {\％}}^{3}$
28	77.2	3.01	72.0	3.03	O
29	74.5	2.90	69.6	2.93	\％
30	72.0	2.81	67.2	2.83	－\％
31	69.7	2.72	65.0	2.74	比发
32	67.5	2.63	63.0	2.65	－${ }^{4}$
33	65.5	2.55	61.1	2.57	3 in
34	63.6	2.48	59.3	2.50	．
35	61.7	2.41	57.6	2.43	
36	60.0	2.34	56.0	2.36	¢．․․․
37	58.4	2.27	54.5	2.29	${ }_{\square}$
38	56.9	2.22	53.1	2.23	
39	55.4	2.16	51.7	2.18	
40	54.0	2.10	50.4	2.12	
	Wgt．per lineal ft．of girder， includ＇g rivet heads $=245 \mathrm{lbs}$ ．		Wgt．per lineal ft ．of girder， includ＇g rivet heads $=215 \mathrm{lbs}$ ．		

Maximum fiber strains of $15,000 \mathrm{lbs}$ ．per square inch；holes for $\frac{3 / 4}{4 \prime}$ rivets in both flanges deducted．
Deflection，in inches，under tabular loads，equals the product of the Deflection Coefficient by the square of the span，in feet．

NOTES ON THE STRENGTH AND DEFLECTION OF BEAMS.

Let $\mathrm{A}=$ area of section, in square inches.
$\mathrm{L}=$ length of span, in feet.
$l=$ length of span, in inches.
$\mathrm{W}=$ load, uniformly distributed, in lbs.
$\mathrm{P}=$ load, concentrated at any point, in lbs.
$h=$ height of cross-section, in inches.
$\mathrm{M}=$ bending moment, in foot-lbs.
$m=$ bending moment, in inch-lbs.
$n=$ greatest distance of center of gravity of section from top or from bottom, in inches.
$S=$ strain per square inch in extreme fibers of beam, either top or bottom, in lbs., according as n refers to distance from top or from bottom of section.
$\mathrm{D}=$ maximum deflection, in inches.
$\mathrm{I}=$ moment of inertia of section, neutral axis through center of gravity.
$\mathbf{I}^{\prime}=$ moment of inertia of section, neutral axis parallel to above, but not through center of gravity.
$z=$ distance between these neutral axes.
$\mathrm{Q}=$ section modulus.
$\mathrm{R}=$ least moment of resistance of section, in inch $\cdot \mathrm{lbs}$.
$r=$ radius of gyration, in inches.
$\mathrm{C}=$ coefficient of transverse strength, in lbs.
$\mathrm{E}=$ modulus of elasticity ($27,000,000$ for wrought iron and $29,000,000$ for steel).
For a beam of any cross-section the following formulæ express the relation existing between the properties of the section.

$$
\begin{array}{r}
\mathrm{I}^{\prime}=\mathrm{I}+\mathrm{A} z^{2} ; \quad r=\sqrt{\frac{I}{A}} ; \quad \mathrm{Q}= \\
\mathrm{R}=\frac{\mathrm{I}}{n} \mathrm{~S}=\mathrm{QS} ; \quad \mathrm{C}=\frac{2}{3} \mathrm{QS} .
\end{array}
$$

If a beam, supported at the ends, is loaded with a weight, this weight produces reactions at the two supports, the sum of which is equal to the weight. The weight and the reactions are the external forces acting on the beam. They produce a
bending of the beam, by which the fibers of the upper portion of the beam are shortened and the fibers of the lower portion are elongated, the result of a compressive strain in the upper portion and a tensile strain in the lower portion of the cross-section of the beam. Between the top and the bottom of the crosssection is a place where no shortening or lengthening of the fibers occurs, and this is called the neutral axis. In steel, and in other homogeneous materials having equal resistances to compression and tension alike, the neutral axis is coincident with the center of gravity of the section, and in symmetrical sections, as in I-beams, this is at the middle of the depth of the beam.

At any point in the length of the beam, the tendency to produce bending is equal to the algebraic sum of the moments of the external forces at that point. This moment of the external forces is called the "bending moment." A beam resists bending at any point by the resistance of its particles to extension or compression, the sum of the moments of which about the neutral axis of the cross-section is called the "moment of resistance." The fundamental principle of the strength of beams is that the bending moment of the external forces is equal to the moment of resistance of the internal forces resisting flexure. As the moment of resistance of a section is generally expressed in inch-pounds, the bending-moment must also be expressed in inch-pounds. The following formulæ give the relations existing between bending-moment, moment of resistance, section modulus, and the strain per square inch.

$$
\begin{array}{ll}
m=\mathrm{R} ; & \mathrm{Q}=\frac{m}{\mathrm{~S}} \\
m=\mathrm{QS} ; & \mathrm{S}=\frac{m}{\mathrm{Q}}
\end{array}
$$

If the bending-moment is in foot-pounds the following relations are convenient:

$$
C=8 M ; \quad M=\frac{C}{8} ;
$$

and for a uniformly distributed load, W, in lbs., the span, L, being taken in feet,

$$
C=W L ; \quad W=\frac{C}{L}
$$

These last two formulx are of great practical convenience for obtaining the safe uniformly distributed loads for the va-
rious sections, as it is only necessary to divide the coefficient of strength by the span, in feet, to obtain the safe uniformly distributed load, in lbs. If the uniformly distributed load, in lbs., is given, multiply it by the span in feet and the result is the required coefficient of strength, and the proper section required can be obtained by inspection of the tables.

The moment of inertia, section modulus, radius of gyration, and coefficient of strength are given in the tables of properties for all sections of structural shapes of steel rolled by the Passaic Rolling Mill Co.

REACTIONS.

If a beam resting at its extremities upon two supports is loaded with a weight, each support reacts with an upward pressure, which is called the reaction of the support. This reaction is equal to the weight carried by the support. The sum of the reactions of the two supports will equal the total load on the beam. If the load is either uniformly distributed, applied at the center of the span, or symmetrically placed on each side of the center of the span, the reaction of the two supports will be the same and each equal to one-half the load.

When the loads are not symmetrically placed, the reactions are determined in the following manner: - Let AB represent a beam supported at A and B and loaded with the
 weights P^{\prime} and $P^{\prime \prime}$. The reaction at one support due to a weight is equal to the weight multiplied by the distance of its center of gravity from the other support and divided by the length of the span. The total reaction at the support is equal to the sum of the reactions produced by all the loads. Then,

$$
\begin{aligned}
& \frac{\mathrm{P}^{\prime \prime} b}{l}=\text { reaction at } \mathrm{A} \text { due to weight } \mathrm{P}^{\prime \prime} \text {, } \\
& \frac{\mathrm{P}^{\prime}(a+b)}{l}=\text { reaction at } \mathrm{A} \text { due to weight } \mathrm{P}^{\prime}, \\
& \mathrm{V}^{\prime}=\frac{\mathrm{P}^{\prime \prime} b}{l}+\frac{\mathrm{P}^{\prime}(a+b)}{l}=\text { total reaction at } \mathrm{A} .
\end{aligned}
$$

In the same way the total reaction $\mathrm{V}^{\prime \prime}$, at B is obtained, and as a check on the calculations, $\mathrm{V}^{\prime}+\mathrm{V}^{\prime \prime}$ must equal $\mathrm{P}^{\prime}+\mathrm{P}^{\prime \prime}$.

SHEAR.

The loads and opposing reactions on a beam not only tend to bend the beam but also to shear it across vertically. The vertical force which tends to produce shearing is called the shear. The shear at an abutment or support is equal to the reaction of the support. At any point between the supports the shear is equal to the difference between the reaction at one support and the total load occurring between that support and the point considered. Thus, referring to Fig. I, the shear at the support A is equal to the reaction V^{\prime}. The shear at all points between A and the point of application of the load P^{\prime} is uniform and equal to the reaction V^{\prime}, for the reason that no load occurs to be deducted from the reaction. The shear at any point between P^{\prime} and $\mathrm{P}^{\prime \prime}$ is obtained by deducting the load P^{\prime} from the reaction V^{\prime}, and the shear is therefore uniform between the points of application of these loads. Where a beam is loaded with concentrated weights, changes in the amount of shear occur only at the points where the loads are applied. If the load is distributed, the shear changes in amount at every point of the loaded length. In all cases the shear can be calculated by first finding the reaction at one support produced by the total load, and the shear at any point will be the difference between this reaction and the sum of all the loads occurring between that support and the point considered.

If a beam, supported at both ends, carries a uniformly distributed load over its entire length, the shear at each support is one-half the total load on the beam, and decreases uniformly to zero at the center of the span. If the load is concentrated at the center of the span, the shear is uniform throughout the entire length of the beam, and equal to onehalf the load.

If the reaction, which acts upward, is considered as positive, and the loads, which act downward, are considered as negative, the shear at any point is the algebraic sum of the vertical forces acting on the beam between either support and the point considered.

BENDING-MOMENT.

The applied loads and their reactions constitute the external forces which tend to bend the beam. This bending is
measured by the moment of the external forces, which is called the benaing-moment. Let $A B$ be a beam supported at its ends and loaded with the weights $\mathrm{P}_{1}, \mathrm{P}_{2}$, and P_{3}. These weights produce reactions at A
 and B , which are represented by V^{\prime} and $\mathrm{V}^{\prime \prime}$ respectively. If a section is taken at k, at a distance, x, from the left support, and the left-hand portion only of the beam is considered, the tendency to produce bending at k is measured by the moment of the reaction about that point. The moment of a force being equal to the product of the force by the lever arm of its action, the bending-moment at k is equal to the reaction V^{\prime} multiplied by the distance x. Similarly the bending-moment at P_{1} is equal to the product of the reaction V^{\prime} by the distance a. At P_{2} the reaction V^{\prime} produces a moment equal to the product of the reaction by its distance from P_{2}, and the weight P_{1} also produces a moment equal to the weight P_{1} multiplied by its distance from P_{2}. The reaction acts upward and tends to produce rotation about P_{2} in the direction of the motion of the hands of a watch. The weight P_{1} acts downward and tends to produce rotation around P_{2} in a direction opposite to the motion of the hands of a watch. The reaction V^{\prime} and the weight P_{1}, therefore, produce moments around P_{2} tending to produce rotation in opposite directions. The resulting bend-ing-moment at P_{2} is the difference of the two moments. If moments tending to produce rotation in one direction are considered as positive, and moments tending to produce rotation in the opposite direction as negative, then the bending moment at any point is obtained by taking the algebraic sum of the moments of all the forces, acting on the beam between either support and the point considered, around that point. From this it follows that the bending moment

$$
\begin{aligned}
& \text { at } \mathrm{P}_{1}=\mathrm{V}^{\prime} a \\
& \text { at } \mathrm{P}_{2}=\mathrm{V}^{\prime}(a+b)-\mathrm{P}_{1} b \\
& \text { at } \mathrm{P}_{3}=\mathrm{V}^{\prime}(a+b+c)-\mathrm{P}_{1}(b+c)-\mathrm{P}_{2} c .
\end{aligned}
$$

In calculating the bending moment the weights are taken in pounds. If the distances are taken in feet the bendingmoment will be expressed in foot-lbs. If the distances are taken in inches the bending-moment will be in inch lbs.

The bending-moment varies from point to point and attains a maximum value at some point the location of which can be obtained by trial. The point at which the bending-moment attains a maximum depends upon the shear. If the load is distributed, the maximum moment will occur at that point in the length of the beam where the shear becomes equal to zero; that is, at the point where the load on the beam between one support or abutment and the point considered becomes equal to the reaction of that support. If the loads are concentrated at several points, maximum bending will always occur at the point of application of one of the loads. The particular load at which maximum bending occurs, is the one at which the sum of all the loads on the beam between one support or abutment up to and including the load in question, first becomes equal to or greater than the reaction at the support.

In general, the bending-moment is a maximum at the point where the shear becomes equal to zero, or, due regard being paid to the algebraic sign of the shear, at the point where the shear changes from a positive value to a negative value, or the reverse.

EXAMPLE.

Let $A B$ represent a beam, 20 feet long between centers of supports, loaded in the manner shown:

The portion of the load
Fig. 3. $9000 \mathrm{lbs} .12000 \mathrm{lbs} 6000 \mathrm{lbs} . P_{3}$ carried by the left-
 lbs.; similarly the portion of P_{1} carried by the same support is $\frac{1660}{240}$ of P_{1}, or $6,000 \mathrm{lbs}$. The reaction, V_{1}, of the left support is the sum of these three, or $\mathbf{1 2 , 0 0 0} \mathrm{lbs}$. In the same manner the reaction V_{2}, at the right-hand support, can be obtained by taking the sum of the portions of the loads going to that support, and will be found to be $15,000 \mathrm{lbs}$. The sum of the two reactions must equal the sum of the loads on the beam.

If the bending-moment is taken at the point of application of the load P_{2}, and the left-hand portion of the beam only is
considered, the reaction V_{1} produces a moment equal to the product of the reaction by its distance from P_{2}; and the load P_{1} produces a moment equal to the product of the load by its distance from P_{2}. As these two moments tend to produce rotation in opposite directions, the resultant moment of the external forces around P_{2} is equal to the difference between these two moments, or the bending moment, in inch-lbs.,

$$
\begin{aligned}
m & =\mathrm{V}_{1} \times 140-\mathrm{P}_{1} \times 60=12,000 \times 140-9,000 \times 60 \\
& =\mathrm{I}, \mathrm{I} 40,000 \text { inch-lbs. }
\end{aligned}
$$

In this case this is the maximum bending-moment on the beam, because at the load P_{2} the sum of the loads on the beam between the support A up to and including P_{2} first becomes equal to, or greater than, the reaction at A.

If it is required to find the proper size of steel beam necessary to safely carry the above loads, the section modulus is found from the foregoing formulæ, assuming a fiber strain of $16,000 \mathrm{lbs}$. per square inch, as follows:

$$
Q=\frac{m}{S}=\frac{1,140,000}{16,000}=71.25
$$

A $15^{\prime \prime}$ steel I-beam, weighing 50 lbs. to the foot, has a section modulus of 70.6 , and is sufficient for the purpose.

If the bending-moment is wanted in foot-pounds, the lengths are taken in feet instead of in inches; and

$$
\begin{aligned}
\mathrm{M} & =\mathrm{V}_{1} \times 11_{3}^{2}-\mathrm{P}_{1} \times 5=12,000 \times 11_{3}^{2}-0,000 \times 5 \\
& =95,000 \text { foot-lbs. }
\end{aligned}
$$

and the coefficient of strength required for a steel beam to carry the loads is,

$$
\mathrm{C}=8 \mathrm{M}=8 \times 95,000=760,000
$$

A $15^{\prime \prime}$ steel I, weighing 50 lbs . per foot, has a coefficient of strength of $753,300 \mathrm{lbs}$., and the size of beam required is the same as before.

The following tables give general formulæ for the bendingmoments, maximum safe loads, and deflections for beams loaded and supported in different ways. In using these tables to obtain loads, or deflections, all lengths must be expressed in inches.

			(2)	
$\begin{gathered} \text { Max. Lıoad, } \\ \text { Lbs. } \end{gathered}$	© $01 \sim$	(3) 0	6 0 0 0	
$\begin{aligned} & \text { Bending Moment, } \\ & \text { inch lbs. } \end{aligned}$				
Lengths in				

108 THE PASSAIC ROLLING MILL COMPANY.

	$\cdots \left\lvert\, \begin{aligned} & -1 \\ & \mu \end{aligned}\right.$			\cdots
	$\left.\begin{aligned} & \text { ® } \\ & \sim \\ & \infty\end{aligned} \right\rvert\, \sim$	Q Q O	ف 0 χ	
$\begin{aligned} & \text { Bending Moment, } \\ & \text { inch lbs. } \end{aligned}$		$\left.\begin{array}{ll} A_{1} & \stackrel{\sigma}{\sigma} \\ \tilde{\mu}_{1} \end{array} \right\rvert\, \propto 2$		

THE PASSAIC ROLLING MILI COMPANY. 109

	d ∞	∞ \square ∞	0 0 0 0 -1	ف\|

Lengths, in inches. Mode of Loading. Loads, in lbs.		Bending Moment, inch lbs.	Max. Load, Ibs.	Deflection, inches.	Remarks.
Both ends supported, load distributed, decreasing uniformly toward the center.		$\begin{gathered} W \times\left(\frac{1}{2}-\frac{x}{l}+\frac{2 x^{2}}{3 l^{2}}\right) \\ M a x=\frac{W l}{12} \end{gathered}$	$\frac{12 \mathrm{SQ}}{1}$	$\frac{3 W I^{3}}{320 E I}$	Weakest section at center of span.
Both ends supported, load distributed, increasing uniformly toward the center.		$\begin{gathered} W x\left(\frac{1}{2}-\frac{2 x^{2}}{3 l^{2}}\right) \\ \text { Max. }=\frac{W l}{6} \end{gathered}$	$\frac{6 \mathrm{SQ}}{l}$	$\frac{W l^{3}}{60 E I}$	Weakest section at center of span.
Both ends supported, load distributed, increasing uniformly toward one end.		$\begin{aligned} & \frac{W x}{3}\left(1-{\frac{x}{l^{2}}}^{2}\right) \\ & M a x .=\frac{104 W \ell}{810} \end{aligned}$	$\frac{810 \mathrm{SQ}}{104!}$	$\frac{47 \mathrm{~W} l^{3}}{3600 \mathrm{EI}}$	Weakest section $x=0.52 \boldsymbol{z}$
Two symmetrical supports, load uniformly distributed.		At either support: $\frac{W a^{2}}{2 i}$ At center of span : $\frac{W}{2}\left(a-\frac{i}{4}\right)$	The supp and becomes Max. Bend	power varies with ximum when $\mathbf{a}=\mathbf{0}$ $\mathrm{m} .=\frac{3 W 7}{140} ; \text { Max }$	ation of a to $\boldsymbol{\ell}$, l, in which case, $d=\frac{140 S Q}{3 l}$

THE PASSAIC ROLLING MILL COMPANY. 111

COMPARISON OF SAFE LOADS AND CORRESP BEAMS LOADED AND SUPPORTED IN VAR The safe uniformly distributed load on the beam, having its ends simply supported, column of the table gives the relative safe loads for the various ways of applying the load an a factor by which the load, as given for any case, may be multiplied and the result consider having each end simply supported. The last column gives the relative deflections for the under the safe uniformly distributed load with ends simply supported, being taken as the u	G DEFL AYS. a unit of co ng the beam iformly distri es under thei	ECTION mparison, and The third buted load safe loads, t	S, the second column gives n the beam, e deflection
MODE OF LOADING AND SUPPORTING BEAM.	Relative Load Load.	Factor for Obtaining Equiv. Uni- form Load, Ends Sup'd.	Relative under Safe Load.
Both ends simply supported, load			
" " " " load concentrated at center of beam		2	0.80
load concentrated anywhere between supports	$12 \div 8 a b$	$8 a b \div 12$	Variable.
" " " load in two parts symmetrically concentrated.	$l \div 4 a$	$4 a \div 1$	Variable.
" " " " load distributed, decreasing uniformly toward the center			1.07
" " " " load distributed, increasing uniformly toward the		$1{ }^{1}$	0.96
" " " load distributed, increasing uniformly toward	0.	1.03	0.97
Cantilever; one end firmly fixed, load uniformly distributed...	$\frac{1}{4}$	1.0	2.40
" " " " " load concentrated at other		$\stackrel{8}{9}$	3.20
One end fixed; other end simply supported, load uniformly distr	1		1.92
" " " " " " ${ }^{\text {\% }}$ " load con		$1{ }^{1}$	0.48
Both ends firmly fixed, load uniformly distributed	$1{ }^{\frac{1}{2}}$,	0.30
Two symmetrical sup- $\{$ load in two parts, concentrate	$1 \div 4 a$	$4 a \div l$	Variable.
ports between ends, \{ load uniformly distributed, supports economically	5.83	0.	

112 THE PASSAIC ROLLING MILL COMPANY.

MOMENT OF INERTIA AND SECTION MODULUS FOR USUAL SECTIONS.

Sections.	Moment of Inertia, I.	Section Modulus, Q.
	$\mathrm{I}=\frac{\mathrm{bh}^{3}}{12}$	$\frac{\mathrm{bh}^{2}}{6}$
	$\mathrm{I}^{\prime}=\frac{\mathrm{bh}^{3}}{3}$	
	$\mathrm{I}=\frac{\mathrm{bh}^{3}}{36}$	Min. $=\frac{\mathrm{bh}}{}{ }^{2}$
	$\mathrm{I}^{\prime}=\frac{\mathrm{bh}^{3}}{12}$	
	$\begin{aligned} & \mathrm{I}=\frac{\pi \mathrm{d}^{4}}{64} \\ & =0.0491 \mathrm{~d} 4 \end{aligned}$	$\begin{aligned} & \frac{\pi \mathrm{d}^{3}}{32} \\ = & 0.0982 \mathrm{~d}^{3} \end{aligned}$
	$\mathrm{I}=\frac{\mathrm{bh} 3-\mathrm{b}^{\prime} \mathrm{h}^{\prime 3}}{12}$	$\frac{\mathrm{I}}{0.5 \mathrm{~h}}$
	$I=0.0491\left(d^{4}-d^{\prime} 4\right)$	$0.0982\left(\mathrm{~d}^{3}-\frac{\mathrm{d}^{\prime} 4}{\mathrm{~d}}\right)$
	$\mathrm{I}=\frac{\mathrm{b}^{\prime} \mathrm{n}^{3}+\mathrm{bn}^{\prime} 3-\left(\mathrm{b}-\mathrm{b}^{\prime}\right) \mathrm{a}^{3}}{3}$	Min. $=\frac{\mathrm{I}}{\mathrm{n}}$
$\frac{b^{\prime} \cos ^{n-b} x^{h}}{h^{h}}$	$\mathrm{I}=\frac{\mathrm{bh} 3-2 \mathrm{~b}^{\prime} \mathrm{h}^{\prime 3}}{12}$	$\frac{\mathrm{I}}{0.5 \mathrm{~h}}$

THE PASSAIC ROLIING MILL COMPAN゙V. 113

MOMENT OF INERTIA OF RECTANGLES.

	Width of Rectangle, in inches.						
$\stackrel{ \pm}{\triangle} \cdot \underset{. E}{ }$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$		$\frac{7}{8}$	1
6	4.50	6.75	9.00	11.25	13.50	15.75	18.00
7	7.15	10.72	14.29	17.86	21.44	25.01	28.58
8	10.67	16.00	21.33	26.67	32.00	37.33	42.67
9	15.19	22.78	30.38	37.97	45.56	53.16	60.75
10	20.83	31.25	41.67	52.08	62.50	72.92	83.33
11	27.73	41.59	55.46	69.32	83.18	97.06	110.92
12	36.00	54.00	72.00	90.00	108.00	126.00	144.00
13	45.77	68.66	91.54	114.43	137.31	160.20	183.08
14	57.17	85.75	114.33	142.92	171.50	200.08	228.67
15	70.31	105.47	140.63	175.78	210.94	246.09	281.25
16	85.33	128.00	170.67	213.33	256.00	298.67	341.33
17	102.35	153.53	204.71	255.89	307.06	358.24	409.42
18	121.50	182.25	243.00	303.75	364.50	425.25	486.00
19	142.90	214.34	285.79	357.24	428.68	500.14	571.58
20	166.67	250.00	333.33	416.67	500.00	583.33	666.6%
21	192.94	289.41	385.88	482.34	578.81	675.28	771.75
22	221.83	332.75	443.67	554.58	665.50	776.42	887.33
23	253.48	380.22	506.96	633.70	760.44	887.18	1013.92
24	288.00	432.00	576.00	720.00	864.00	1008.00	1152.00
25	395.52	488.28	651.04	813.80	976.56	1139.32	1302.08
26	366.17	549.25	${ }^{7} 32.33$	915.42	1098.50	1281.58	1464.67
27	410.06	615.09	820.131	1025.16	1230.19	1435.22	1640.25
28	457.33	686.00	914.67	1143.33	1372.00	1600.67	1829 . 33
29	508.10	762.16	1016.21	1270.26	1524.31	1778.36	2032.42
30	562.50	843.75	1125.00	1406.25	1687.50	1968.75	2250.00
31	620.65	930.97	1241.30	1551.62	1861.94	2172.26	2482.60
32	682.67	1024.00	1365.33	1706.67	2048.00	2389.33	2730.67
33	748.69	1123.03	1497.38	1871.72	2246.06	2620.40	2994.76
34	818.83	1228.25	1637.67	2047.08	2456.50	2865.92	3275.33
35	893.23	1339.84	1786.46	2233.07	2679.68	3126.30	3572.92
36	972.00	1458.00	1944.00	2430.00	2916.00	3402.00	3888.00
37	1055.27	1582.90	2110.54	2638.17	3165.80	3693.44	4221.08
38	1143.17	1714.75	2286.33	2857.923	3429.50	4001.08	4572.67
39	1235.81	1853.72	2471.62	3089.53:	3707.44	4325.34	4943.24
40	1333.33	2000.00	2666.67	3333.33	4000.00	4666.67	5333.33

FIREPROOF CONSTRUCTION.

A simple type of fireproof construction is illustrated in Fig. 1, page 38. Figs. 2,3 and 4 show the manner of connecting the beams and girders with each other by means of connection angles, which are riveted or bolted to the beams and girders. The standard sizes of these connection angles and the number of bolts or rivets required are given on pages $46-47$. The manner of connecting the beams and girders to the columns is illustrated by the drawings on page 43 .

Brick arches were formerly largely used for the construction of fireproof floors in buildings. This type of construction consists usually of a $4^{\prime \prime}$ course of brick, resting on the lower flanges of the \mathbf{I} beams against brick skewbacks, the arch having a rise at the center of not less than $3^{\prime \prime}$, and not less than $1^{\frac{1}{4} / \prime}$ rise for each foot of span; in case the floor is to carry heavy loads, two or more courses of brick should be used. The \mathbf{I} beam joists should be spaced about 5 or 6 ft . centers. The space above the arches is filled with concrete in which wooden strips are imbedded, to which the floor is nailed. The plastered ceiling is applied directly to the under side of the brick arches. The horizontal thrust of the arches must be provided for by the use of tie-rods, generally $\frac{3^{\prime \prime}}{4}$ cliameter, spaced at intervals of from 4 to 6 ft . The tie-rods should pass through the beams as near the center of the skewback as possible; generally, the tie-rods should pass through the beams at a distance from the bottom of the beam equal to $\frac{1}{3}$ the depth of the beam. The thrust of the arches, in lbs. per lineal foot, can be found by the formula, $T=\frac{3 W L^{2}}{2 R}$, in which W is the load per square foot, L the span of the arch in feet, and R the rise of the arch in inches. A channel or an angle should be used to support the arches abutting against the walls, and to properly distribute the loads upon the walls. The tie-rods in the arches abutting against the walls should be securely anchored to the wall channels or angles. The excessive weight and the lack of adequate protection of the lower flanges of the beams are serious objections to this type of construction; and where flat ceilings are required it is unavailable.

Hollow brick flat arches of the types shown on pages 39 and 40 are very generally used for the construction of fireproof floors. These arches are generally of porous terracotta material, which is made of a mixture of clay and sawdust subjected to an intense heat, which consumes the combustible material, leaving the brick porous and reducing the weight materially while preserving the fireproof qualities intact. For arches, partitions, furring, column covering, roof and ceiling tiles, etc., it is particularly adapted. It receives and holds plaster and readily admits driving of nails, which hold equally as well as if driven in wood. The underside of the arch being flat permits the construction of a level ceiling. The joints in the arches are made radial, and the blocks should be thoroughly cemented together. The beams should be spaced from 4 to 6 ft . apart and connected together with $\frac{3 / 4}{4}$ diameter tierods at intervals not exceeding 6 ft . The arch should have a thickness of at least $r_{\frac{1}{4}}{ }^{\prime \prime}$ for each foot of span. The space above the arches is filled with a light concrete consisting of cinders and cement, into which wooden strips are imbedded, to which the flooring is nailed.

Fireproof partitions are constructed of porous terra-cotta hollow brick blocks set with broken joints and held in place at intervals with light angle iron or Tee iron studding.

Roofs and ceilings are constructed of hollow tiles set between Tee irons, as shown on page 40. Suspended ceilings may also be constructed of light Tee rons covered with wire lathing and plastered.

All ironwork should be protected by a covering of fireproof material. The arches should always have a protection flange covering the underside of the beams. Beams, girders and columns, not inclosed in the flooring or partitions, shoald have a covering of fireproof material similar to the types illustrated on page 39. Particular attention should always be given to the proper covering of all ironwork with fireproof material in order that it may be protected from heat and prevent warping and settlement in case of fire.

The following table gives approximate safe loads, in lbs. per square foot, for ordinary flat arches, with a factor of safety of from 6 to 8 , deduced from recent experiments on arches of this type. The margin of safety should be large for the reason
that, owing to the hasty and imperfect manner in which the arches are built in ordinary construction, they are liable to fail under much lighter loads than if carefully set.

APPROXIMATE SAFE LOADS ON FLAT ARCHES; Pounds per Square Foot.

Depth of Arch, Inches.	Distance between Beams.					
	$\mathbf{4 f t}$	$\mathbf{5 f t}$	$\mathbf{6 f t}$	$\mathbf{7 f t}$	$\mathbf{8 f t}$	
6	150	100				
7	200	150	125			
8	275	175	125			
9	300	200	140			
10	325	225	150	100		
12	400	250	200	125	100	

The weight of the fireproof construction should be calculated for each case. The floor weight consists of the weight of the arches, filling, flooring, plaster ceiling, and steel construction. Where partitions are permanent the floor beams immediately under them should be calculated to carry the partitions in addition to the regular floor load; but where partitions are not permanent, as in office buildings, it is customary to add 20 lbs . per sq. ft . to the weight of the floor construction in order to cover the weight of the partitions, thus permitting them to be changed, from time to time, as circumstances may require. The approximate weights of different types of fireproof floor construction are given in the following table.

The weights of the arches are taken from catalogues of standard manufacturers. The weight of the cinder concrete filling is taken at 72 lbs . per cubic foot. The finished floor line is assumed to be $3^{\prime \prime}$ above the top of the steel \mathbf{I} beams, and the finished plaster line $\mathbf{2}^{\prime \prime}$ below the underside of the I beams, except for brick arches. Cinder concrete is sometimes assumed to weigh 48 lbs . per cubic foot, but samples of perfectiy dry cinder concrete from filling in New York buildings will average 72 lbs . per cubic foot.

APPROXIMATE WEIGHTS OF FIREPROOF FLOORS，
Exclusive of Partitions．

$\begin{aligned} & \text { Type } \\ & \text { of } \\ & \text { Arch. } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { of } \\ & \text { I } \\ & \text { Beam, } \\ & \text { Ins. } \end{aligned}$	Thick－ ness of Arch， Ins．		Weight，in lbs．，per Square Foot．					
				Arches．	Filling．	Floor－ ing．	$\begin{aligned} & \text { Ceil- } \\ & \text { ing. } \end{aligned}$	Steel．	Total．
	8	4	12	40	18	4	4	8	74
	9	4	12	40	18	4	4	8	74
	10	4	13	40	24	4	4	9	81
	12	4	15	40	36	4	4	10	94
	15		18	40	54	4	4	11	113
	8	6	13	29	30	4	4	7	74
	8	8	13	35	18	4	4	ح	68
	9	6	14	29	36	4	4	7	80
	9	9	14	37	18	4	4	7	70
	10	8	15	35	30	4	4	8	81
	10	10	15	41	18	4	4	8	75
	12	8	17	35	42	4	4	8	93
	12	12	17	48	18	4	4		82
	15	8	20	35	60	4	4	10	113
	15	12	20	48	36	4	4	10	102
	8	8	13	30	18	4	4	7	63
	9	8	14	30	24	4	4	7	69
	9	9	14	32	18	4	4	7	65
	10	8	15	30	30	4	4	8	76
	10	10	15	34	18	4	4	8	68
	12	8	17	30	42	4	4	8	88
	12	12	17	37	18	4	4		71
	15	8	$\stackrel{20}{20}$	30 37	60 36	4	4	10	108
	15	12	20	37	36	4	4	10	91

In addition to the weight of the floor construction，which is called the dead load，the floors must be designed to carry a live load of sufficient amount，which is usually determined by the purpose for which the building is to be used．The live load comprises the people in the building，furniture，movable stocks of goods，small safes，and varying loads of any character． Large safes require special provision usually embodied in the construction．The following live loads，per sq．ft．，are rec－ ommended as good practice in building construction：

118 THE PASSAIC ROLLING MILL COMPANY.

The weight of a crowd of people is usually assumed at 80 lbs . per sq. ft., but the weight of a very densely packed crowd may be as much as 120 lbs . The latter load can scarcely occur under the conditions governing an office building. Large crowds seldom collect in offices except on the lower floors devoted to stores and banking purposes, for which floors proper allowance for live loads is usually made. The actual live loads on office floors are generally much less than given in the preceding table. Messrs. Blackall \& Everett, Architects, of Boston, made a careful canvass of the live loads in 210 Boston offices, and found that the average live load for the entire number of offices was about 17 lbs . per sq. ft . The greatest live load in any one office was 40 lbs . per sq. ft., while the average live load for the heaviest 10 offices was 33 lbs . per sq. ft. These figures give some idea of the average actual live loads in such buildings; but the use of such light average loads is not to be recommended, as the actual live load is liable to be concentrated, thus producing an effect greater than represented by the average load. Provision should be made for all possibilities of extreme, either present or future. No single floor should be proportioned for a live load less than those previously given. In high office buildings, hotels, and apartment houses, the foundations and lower tiers of columns may safely be proportioned for a live load of 50 lbs . per sq. ft . on all the floors; but the floors themselves and the upper tiers of columns should be proportioned for the full live loads previously given. Factories, warehouses, and similar buildings should be proportioned throughout for the full live load on each floor.

Building ordinances regulate the design of buildings in several of the larger cities, and the designer must be governed accordingly. The salient features of the Building Laws of New York, Chicago, and Boston are embodied in the following table.

COMPARISON OF BUILDING LAWS.

	New York.	Chicago.	Boston.
Floor Loads, lbs. per sq. ft Dwellings.............	60	70	70
Hotels and Apartm	60	70	70
Office Buildings.	70	70	100
Places of Public Assembly.	90	70	150
Stores, Warehouses, Factories, etc.	150 up	150 up	250up
Allowable Strains, lbs. per sq. in.			
	16,000	16,000	16,000
Tension, Steel Shapes......	16,000	16,000	15,000
Flanges, Rivetted Steel Gir-	14,000 net	13,500 gross	12,000 gross
Shearing, Steel Web Plates.	9,000	10,000	10,000
Shearing, Shop Rivets, Steel.	10,000	9,000	10,000
Shearing, Field Rivets, Steel.	8,000	7,500	
Bearing on Steel Pins and Rivets.	20,000		18,000
Bending on Steel Pins.....	20,000		22,500
	15,200-58-	17,000-60- $\frac{l}{r}$	$\frac{12,000}{l^{2}}$
Steel Columns.		$\begin{aligned} & \text { d not to exce } \\ & 13,500 \end{aligned}$	$36,000 r^{2}$
Round Cast Iron Columns.	11,300-30-	10,000	10,000
		$1+\frac{l^{2}}{600 d^{2}}$	$\frac{1+\frac{l^{2}}{800 d^{2}}}{}$
Square Cast Iron Columns. $\{$	11,300-30-	10,000	10,000
		$1+\frac{l^{2}}{}$	l^{2}
Allowable Pressures, tons per sq. ft.		$1+\frac{12}{800 d^{2}}$	$\overline{1,066 d^{2}}$
Granite...................	72	38	60
Marble and Limeston	50	30	40
Sandstone Brickwork in Portland Ce-	30	24	30
	18	15	
Brickwork in ordinary Cement Mortar.	15	12	15
Brickwork in Cement and Lime Mortar..............	111 $\frac{1}{2}$		12
Brickwork in Lime Mortar..	8	8	8
Clay	1	2	
Dry Sand, r 5 ft . thick......		$1{ }^{3}$	
Clay and sand.............	2	$1 \frac{1}{2}$	
Good Solid Natural Earth... Loads on piles, tons each...	4		
	20	25	

EXPLANATION OF TABLES ON SPACING OF PASSAIC STEEL I BEAMS.

The tables on pages 122-133 give the proper spacing in feet, center to center, for the principal weights of beams for uniformly distributed floor loads, and furnish a convenient means of selecting the proper size of steel I beams for supporting floors. These tables are calculated for total loads which include the live load that the floor is to carry, and the dead weight of the floor construction.

Suppose that $12^{\prime \prime} \times 3 \mathrm{I}_{\overline{2}} \mathrm{lb}$. beams are to be used as joists to carry a total live and dead load of 175 lbs . per square foot on a span of 20 ft ., find the proper spacing. On page 128 , under a span of 20 ft ., the proper spacing is given as 5.6 feet.

When the load is given, and the span and spacing of the beams are fixed, the proper beam can be selected. Thus, for a total load of 175 lbs . per square foot, if the length of the beams is 18 ft ., and the spacing fixed at 5 ft . apart, by referring to page 129 it is found that a $10^{\prime \prime} \times 30 \mathrm{lb}$. beam is required, the proper spacing of which is given as 5.1 ft . for a span of 18 ft .

Girders for supporting uniformly distributed loads may be selected from these tables. Find a girder to support a total load of 150 lbs . per square foot, assuming the girders to be 20 ft . long, and spaced 20 ft . centers. On page 126 , for a span of 20 ft . and a spacing of 20 ft ., it is found that the nearest beam is a single $20^{\prime \prime} \times 65 \mathrm{lb}$. I having a spacing of 20.4 ft . ; butit may be necessary to use a shallower girder made of two beams. The same table gives 10.2 ft . as the proper spacing for a $15^{\prime \prime} \times 42 \mathrm{lb}$. I, so that if two of these beams are used, side by side, forming a girder, the spacing will be $2 \times 10.2=20.4 \mathrm{ft}$. If the spacing between girders is given and two beams required, divide the spacing by 2 and select the proper beam, and use a girder made of two such beams.

A floor 40 ft . wide, to carry a total load of 200 lbs . per square foot, has a centre line of girders running lengthwise of the building, supported on columns. The length of each girder is 20 ft . The joists are spaced 5 ft . apart, and their span, allowing for reduction of length by bearing on the wall, is ig feet. From the table on page $130,12^{\prime \prime} \times 33^{\frac{1}{2}} \mathrm{lb}$. beams, having a spacing of 5.4 ft ., are at once selected for the joists. Assume 2 beams for each girder, then divide the spacing of girders, 10 ft . by 2 , and for a span of 20 ft . a $15^{\prime \prime} \times 50 \mathrm{lb}$. beam, having a spacing of 9.4 ft ., is selected, so that the girders required will be made of two $15^{\prime \prime} \times 50 \mathrm{lb}$. beams.

Although the load on this girder is concentrated at three points, the bending moment in this case is the same as if the load were uniformly distributed. This will be the case whenever a joist occurs at each column or support, and the length of the girder is an even number of spacings between joists; but if the length of the girder is an odd number of spacings, the bending moment in the girder is less than for a distributed load. The most economical arrangement is shown in Fig. I, page 38, where the length of the girder is 3 times the spacing of the joists, in which case the bending moment on the girder is $\frac{8}{9}$ of that for a distributed load. The tables of spacings may be used for this case in the selection of girders by taking $\frac{8}{8}$ of the spacing given for the girders and proceeding as above, or by increasing the tabular spacings by $\frac{1}{8}$. For example, take the girders in Fig. I, page 38 , for a total load of 150 lbs . per square foot, assuming the length of the girders to be 18 ft ., and the width of the building 36 feet. The spacing of the girders will then be one-half the width of the building, or 18 ft . Multiplying this spacing by $\frac{8}{g}$, gives 16 ft . as the spacing to be used in the calculation, and the proper girder will be found, from page 126 , to be two $12^{\prime \prime} \times 3{ }^{\frac{1}{2}}$ lb . I's, or a single $15^{\prime \prime} \times 55 \mathrm{lb}$. I. For a uniformly distributed load the girder required would have been two $12^{\prime \prime} \times 40 \mathrm{lb}$. beams, or a single $15^{\prime \prime} \times 60 \mathrm{lb}$. beam, so that the economy of such an arrangement is apparent.
Strict accuracy in the design of girders supporting concentrated loads can only be obtained by calculation of the bending moments, using the actual concentrations of loads.
The spacing varies inversely as the intensity of the loading, so that the tables may be adapted for any intensity of loading. Thus, if it is required to find the spacing for a total load of 250 lbs. per square foot, take the table for 125 lbs ., and the required spacing $=\frac{125}{255}=\frac{1}{2}$ that given for 125 lbs .

The spacings on the right of the zigzag line may be reduced so that the deflection will not exceed $\frac{1}{360}$ of the span. If L is the limiting span, at which the shape spaced as given in table has a deflection of $\frac{{ }_{5}{ }^{\frac{1}{6} \overline{0}}}{}$ of the span, and L^{\prime} is the given span, then the spacing given for span L^{\prime} may be reduced by multiplying by $\frac{\mathrm{L}}{\mathrm{L}^{\prime}}$. Thus, on page 122, for a total load of 100 lbs . per square foot, the proper spacing for $12^{\prime \prime} \times 3{ }^{\frac{1}{2}} \mathrm{lb}$. beams, on a span of 28 ft ., is given as 5.0 ft . The limiting span is 24 ft ., then the reduced spacing is,

$$
\frac{24}{2} \frac{24}{8} \times 5.0=4.3 \text { feet, }
$$

and the beams, if used with this reduced spacing, will deflect only $\frac{1}{560}$ of the span under full load.

122 THE PASSAIC ROLLING MILL COMPANY.

THE PASSAIC ROLLING MILL COMPANY．

$\begin{array}{l\|lll} 4 & 0 & 0 & 15 \\ N & 0 & 0 & 10 \\ \hline \end{array}$	
	$\left\lvert\, \begin{array}{cccc} 0 & -\infty & 0 & 0 \\ \therefore \rightarrow-9 & \therefore & \ddots & 0 \end{array}\right.$

THE PASSAIC ROLLING MILL COMPANY.

THE PASSAIC ROLLING MILL COMPANY. 125

126 THE PASSAIC ROLLING MILL COMPANY.

THE PASSAIC ROLLING MILL COMPANY.
Maximum fiber strain, 16,000

 ing $\frac{1}{3} \frac{1}{6}$ of the span.

I BEAMS FOR

128 THE PASSAIC ROLLING MILL COMPANY.

THE PASSAIC ROLLING MILL COMPANY． 199

SPACING OF PA DISTRTBU＇IED						LC	AD per	O dista			N.	PE ter	F	$\begin{aligned} & \mathrm{R} \\ & \mathrm{QU} \\ & \mathrm{~ms}, \mathrm{i} \end{aligned}$	1 AR in fee	OT	$\begin{aligned} & 1 T_{1} \\ & 07 \end{aligned}$	$(0$		$e(7)$	Y	
	害茂出	Distance between Supports，in feet．																				
	\geq	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
10	40		60.4	44.4	34.0	～6．0	21.8	18.0	15.1	12.9	11.1	9.7	8.5	7.5	6.7	6.0	5.4	4.9	4.5	$\overline{4.1}$	3.8	3.5
／	33		54.6	40.1	30.7	24.3	19.7	16.2	13.7	11.6	10.0	8.7	7.7	6.8	6.1	5.4	4.9	4.5	4.1	3.7	3.4	3.1
／	30		45.6	33.5	25.7	20.3	16.4	13.6	11.4	9.7	8.4	7.3	6.4	5.7	5.1	4.6	4.1	3.7	3.4	3.1	2.9	2.6
／	27		43.1	31．7	24.3	19.2	15.5	12.8	10.8	9.2	7.4	6.9	6.1	5.4	4.8	4.3	3．9	3.5	3．2	2.9	2.7	2.5
＂	25		41.5	30.5	23.3	18.4	14.9	12.3	10.4	8.8	7.6	6.6	5.8	5.2	4.6	4.1	$\because .7$	3.4	3.1	2.8	2．6	2.4
9	27		41.6	30.6	23.4	18.5	15.0	12．4	10.4	8.9	7.6	6.7	5.9	5.2	4.6	4.2	3.7	3.4	3.1	2.8	2.6	2.4
／／	25）		34.7	25.5	19.5	15.4	12.5	10.3	8.7	7.4	6.4	5.6	4.9	4.3	$: 3.9$	3.5	3.1	2.8	2.6	2.4	2.2	2.0
／	21		31.7	23.3	17.8	14.1	11.4	9.4	7.9	6.8	5.8	5.1	4.5	4.0	3.5	3.2	2.9	2.6	2.4	2.2	2.0	1.8
8	27	47.3	32.8	24.1	18.5	14.6	11.8	9.8	8.2	7.0	6.0	5.3	4.6	4.1	3.6	3.3	3.0	2.7	2.4	2.2	2.1	
＂	92	42.5	29.5	21.7	16.6	13.1	10.6	8.8	7.4	6.3	5.4	4.7	4.1	3.7	3.3	2.9	2.7	2.4	2.2	6.0	1.8	
／1	18	34.6	24.0	17.7	13.5	10.7	8.7	7.1	6.0	5.1	4.4	3.8	3.4	3.0	$\stackrel{3}{2 .} 7$	2.4	2．2	2． 0.0	1．8	1.6	1.5	
7	20	33.2	23．0	16.9	13．0	10.2	8.3	6.9	5.8	4.9	4.2	3.7	3.4	2.9	2.6	2.3	2.1	1.9				
／	15	25.9	18.0	13.2	10.1	8.0	6.5	5.3	4.5	3.8	3.3	2.9	2.5	2.2	2.0	1.8	1.6	1.5				
6	15	21.5	14.9	11.0	8.4	6.6	5.4	4.4	3.7	3.2	2.7	2.4	2.1	1.9	1.7							
／1	12	17.7	12.3	9.0	6.9	5.5	4.4	3.7	3.1	2.6	2.3	2.0	1.7	1.5	1.4							
5	13	15.3	10.6	7.8	6.0	4.7	3.8															
／	934	11.9	8.3	6.1	4.6	3.7	3.0	2.5	2.1	1.8	1.5	1.3						axim	fibe	tr	16，0	lbs．
4	10	8.3	5.8	4.3	3.3	2.6	2.1	1.7	1.4								per rigl	$\begin{aligned} & \text { squan } \\ & \text { of } t 1 \end{aligned}$	inch hea	y zig	$\begin{gathered} \text { cings } \\ \text { ag lin } \end{gathered}$	the pro－
／／	$7 \frac{1}{2}$	7.1	5.0	3.6	2.8	2．2	1.8	1.5	1.2									defl	ctions	exce	ding	б of
／1	6	5.6	3.9	2.9	2.2	1．7	1.4	1.2	1.0									ar．				

THE PASSAIC ROLLING MILL COMPANY. 131

THE PASSAIC ROLLING MILL COMYANY.

RIVETED GIRDERS.

Riveted girders are used where rolled beams are not sufficiently strong for carrying the load. Riveted girders with single webs, known as plate girders, are more economical than those with double webs, known as box girders; but the latter are stiffer laterally, and should always be used where a great length of span requires a wide top flange for lateral stiffness. If the girder is not held in position laterally, the width of the top flange of the girder should be at least $\frac{1}{20}$ of the span, otherwise the section of the top flange should be increased as follows:

Let $\mathrm{A}=$ the gross area required in the top flange, the girder being supported laterally.
$\mathrm{A}^{\prime}=$ the gross area required in the top flange, the girder being unsupported laterally.
$b=$ length of span \div width of flange, both in inches.

$$
\text { Then } \mathrm{A}^{\prime}=\mathrm{A}\left(\mathrm{I}+\frac{b^{2}}{5000}\right)
$$

The web of the girder must be made of such a thickness that the vertical shearing strain shall not exceed 7500 lbs . per square inch on a vertical cross section of the web. This shearing strain is greatest at the supports ; and, if the load is symmetrically applied, is obtained by dividing one-half the load upon the girder by the area of the vertical cross section of the web. In addition, the web of the girder must either be of sufficient thickness to resist any tendency to buckle, or else it must be stiffened by means of vertical angles riveted to it at intervals not exceeding the depth of the girder. Such stiffeners must be used when the shearing strain, per square inch, exceeds the strain allowed by the formula:

Allowable shearing strain per square inch $=\frac{12000}{1+\frac{h^{2}}{3000 t^{2}}}$
in which " h " represents depth of the web between flanges of girder, and " t " the thickness of one web plate, both in inches. The stiffeners should always reach over the vertical
sides of the angles forming the chords of the girder, and there should be filling pieces between the stiffening angles and the web plate. In every case, whether intermediate stiffeners are used or not, the web at the ends of the girder, where it rests upon supports, should be reinforced by stiffeners so that the reaction of the support may be resisted by an increased section. These end stiffeners should be considered as columns taking the entire load upon the support and transferring it to the web of the girder; and should have sufficient rivets connecting them to the web of the girder to transmit the total reaction at the support. The strain upon the end stiffeners should not exceed $15,000 \mathrm{lbs}$. per square inch of cross section. Stiffeners should always be used at any point where there is concentration of heavy loads; the duty of the stiffeners in such cases is to prevent buckling of the web, and to transmit the load to the web by means of the abutting areas and the rivets, both of which must be sufficient for the purpose.

The rivets used should generally be $\frac{3^{\prime \prime}}{4}$ or $\frac{7}{8}{ }^{\prime \prime}$ diameter, the latter size being preferable and often necessary where girders are to carry heavy loads. Rivets should never be spaced exceeding six inches centers; but in all cases the pitch of the rivets must be closer at the ends of the girder. At any point of the girder there must be sufficient rivets connecting the web to each flange, in a length of flange equal to the depth of the girder, to transmit the total shear at that point. At the end of the girder there must be sufficient rivets connecting the web to each flange, in a length equal to the depth of the girder, to transmit the end reaction of the girder. In the calculation of rivet spacing for girders used in buildings it is customary to allow $9,000 \mathrm{lbs}$. per square inch for shearing and $18,000 \mathrm{lbs}$. per square inch for bearing on the rivets. In plate girders the rivet pitch will usually be determined by the bearing value of the rivets, and in box girders by the shearing value of the rivets. The shearing and bearing values of rivets, for use in building construction, are given on pages 254-255.

Plate girders should never be made too shallow, on account of the deflection ; they should have a depth of not less than one-twentieth of the clear span; if built shallower, more material must be put in the flanges so as to reduce the strain per square inch, and the deflection in proportion.

The flange of a riveted girder comprises all the metal at the top or the bottom of the girder. It is customary in building construction to consider $\frac{1}{6}$ of the area of the web plate as available for flange section, in which case care should be taken to avoid splicing the web plate at or near the center of the girder; if this is observed, it is proper to consider $\frac{1}{6}$ of the web as a part of each flange. If a pair of angle irons does not provide suf. ficient area for the flange, it is customary to use flange plates to make up the required area. Where flange plates are used, the angles should comprise one-half of the flange section, but in heavy flanges where this is impossible, the flange angles should be the heaviest sections rolled. The unsupported width of a flange plate, subjected to compression, should not exceed thirty-two times its thickness, nor should the flange plate extend beyond the outer line of rivets more than five inches, nor more than eight times its thickness.

It is customary in building construction to allow a strain of I5,000 lbs. per square inch on the net section of the bottom or tension flange. Care must be observed to deduct all the area lost by rivet holes, and the rivets should be arranged in the flanges of the girder to make this reduction of area as small as possible. In deducting area lost by rivet holes, the diameter of the holes should be taken $\frac{1}{8}$ inch greater than the rivets, to compensate for injury done the meta! by punching. The top or compression flange of the girder is usually made of the same gross area as the bottom or tension flange.

DESIGN OF A RIVETED GIRDER.

Box girder, to carry a wall 20 inches wide.
Span, 30 feet between centers of supports $=360$ inches.
Total weight to be carried, 200 tons $=400,000 \mathrm{lbs}$.
Depth available, 36 inches over all.
Load on each support, $\frac{1}{2} \times 400,000=200,000$.
Web section required, $200,000 \div 7,500=26.66$ sq. ins.
Two web plates, $33 \frac{11}{2}{ }^{\prime \prime} \times \frac{7}{16}^{\prime \prime}=29.3$ sq. ins.
Bending moment at center of span,
$\frac{1}{8} \times 400,000 \times 360=18,000,000$ inch lbs.
Depth of girder, center of gravity of flanges, 33 inches.
Maximum flange strain, $18,000,000 \div 33=545,450 \mathrm{lbs}$.
Net flange area required, $545,450 \div 15,000=36.4 \mathrm{sq}$. ins.

THE PASSAIC ROLLING MILL COMPANY. 137

In obtaining the above net area of the flange, one rivet hole has been deducted from the area of each angle, and two rivet holes from the area of each cover plate. This deduction is made upon the assumption that the rivets connecting the angles to the web plates are arranged to stagger with the rivets connecting the angles to the flange plates. It is, generally, possible to effect such an arrangement of rivets for a considerable length at the center of the span. If such an arrangement of rivets is not possible, then two rivet holes should be deducted from the area of each angle, and $\frac{1}{6}$ the gross area of the web should be reduced by the area lost for a rivet hole at the extreme edge of the web connecting it to the flange. If a stiffener is used at or near the center of the span, the net area of the web plate available for flange section should be taken at $\frac{1}{9}$ the gross area of the web.

The end reaction of $200,000 \mathrm{lbs}$. on this girder requires 37 rivets, $\frac{7^{\prime \prime}}{8}$ diameter, in single shear to transmit it to either flange in a length equal to the depth of the girder. The depth of the girder for this purpose is taken as the depth, center to center of gravity of flanges; there being two lines of rivets, one line connecting each web to the flange, the rivets will require to be spaced $\mathbf{r}_{4}{ }^{\prime \prime \prime}$ pitch at the end of the girder. This requires an angie having a $6^{\prime \prime}$ leg against the web.

The area required for the stiffeners over the supports is $200,000 \mathrm{lbs} . \div 15,000=13.33$ square inches. Four angles, $3^{\frac{1}{2}} \times 33^{\frac{1}{2}} \times \frac{1^{\prime \prime}}{2}$, provide an area of 13 square inches, and are sufficient for the purpose at each end of the girder.

Applying the formula already given for the allowable shearing strain in the web, it will be found that $6,500 \mathrm{lbs}$. per square inch is the maximum allowable shearing strain, unless the webs are stiffened. Stiffeners of $33^{\frac{1}{2}} \times 3 \frac{1_{2}^{\prime \prime}}{} \times \frac{3}{8}{ }^{\prime \prime}$ angles will, therefore, be required for a short distance near each support where the shearing strain exceeds $6,500 \mathrm{lbs}$. per square inch.

As the bending moment is greatest at the center of the span and diminishes to zero at the supports, it is unnecessary to have the full flange section the whole length of the girder; and, in the present case, one of the two flange plates can be stopped off, short of the supports, without affecting the strength of the girder.
Let $\mathrm{A}=$ total flange area of girder.
$\mathrm{A}^{\prime \prime}=$ total area of that portion of the flange which is to be stopped off.
$\mathrm{I} .=$ length of girder, centers of supports, in feet.
$L^{\prime}=$ required length, symmetrically arranged about the center of span, of that portion of the flange which is to be stopped off, in feet.

$$
\text { Then } L=2+L \sqrt{\frac{A^{\prime \prime}}{A}}
$$

In the present instance

$$
L^{\prime}=2+30 \sqrt{\frac{10.12}{36.71}}=17.7
$$

so that the outer flange plates need only be $17 \frac{3}{4}$ feet long, placed symmetrically about the center of the span.

This girder is illustrated on page 41 .
The following table furnishes a convenient means for finding the net area required in the flange of riveted girders when the load, span, and depth are given.

To obtain the net flange area required, multiply the coefficient given in the table for the given span and depth by the uniformly distributed load in tons of $2,000 \mathrm{lbs}$. The result will be the net area in square inches required for each flange allowing a maximum fiber strain of $15,000 \mathrm{lbs}$. per square inch of net area. To illustrate the application of this table, take the box girder already proportioned in detail. By reference to the table, the coefficient for a span of 30 feet and depth of 32 inches is 0.187 , and the coefficient for the same span with a depth of 34 inches is o.177. The coefficient for a depth of 33 inches will be the mean of these two values, or 0. 182 ; and multiplying this by the load, 200 tons, gives 36.4 as the number of square inches of net area required in the flange. This is the same result as that obtained by the extended calculations already illustrated.

RIVETED GIRDERS.

Multiply the coefficient given in the table by the uniformly distributed load, in tons of 2000 lbs . The result will be the net area, in square inches, required for each flange, allowing a maximum fiber strain of $15,000 \mathrm{lbs}$. per square inch of net area.
Span,

$$
\begin{aligned}
& \text { in } \\
& \text { Feet. }
\end{aligned}
$$

	22	24	26	28	30	32	34	36	38	40	42
10	. 091	. 083	. 077	. 071	. 067	. 063	. 059	055	. 053	. 050	. 047
11	. 100	. 092	. 085	. 079	. 073	. 069	. 065	. 061	. 058	. 055	. 053
12	. 109	. 100	. 092	. 086	. 080	. 075	. 071	. 067	. 063	. 060	. 057
13	. 118	. 109	. 100	. 093	. 087	. 081	. 077	072	. 068	. 065	. 062
14	. 127	. 117	108	. 100	. 093	. 087	. 083	078	. 073	. 070	. 067
15	. 137	. 125	. 115	. 107	. 100	. 094	. 088	. 083	. 079	. 075	. 071
16	. 145	. 133	. 123	114	. 107	. 100	094	089	. 084	. 080	. 076
17	. 155	. 142	. 131	. 121	. 113	. 106	. 100	. 095	. 089	. 085	. 081
18	. 163	. 150	. 139	. 129	. 120	. 113	106	100	. 095	. 090	. 086
19	. 173	. 159	. 146	. 136	. 127	. 119	112	105	. 100	. 095	091
20	. 182	. 167	. 154	. 143	. 133	. 125	117	111	. 105	. 100	. 095
21	. 191	175	161	. 150	140	131	123	117	110	105	100
22	. 200	. 183	. 169	. 157	147	137	129	. 122	. 115	. 110	105
23	. 209	. 192	. 177	. 164	. 153	144	135	. 128	. 121	. 115	109
24	. 218	. 200	. 185	. 171	. 160	150	141	. 133	. 126	120	114
25	. 227	. 209	. 192	. 179	. 167	. 156	147	. 139	. 131	. 125	119
26	. 237	217	. 200	186	173	163	153	145	137	130	124
27	. 245	. 225	. 208	. 193	180	169	159	150	. 142	135	129
28	. 255	. 233	. 215	. 200	187	175	165	155	. 147	140	133
29	. 263	. 242	. 223	. 207	193	181	. 171	161	. 153	145	138
30	. 273	. 250	. 231	. 214	200	. 187	. 177	167	. 157	. 150	143
31	. 282	. 259	. 239	. 221	. 207	. 194	. 183	172	163	. 155	147
32	. 291	. 267	. 246	. 229	. 213	. 200	. 188	178	. 168	. 160	152
33	. 300	. 275	. 254	. 236	. 220	206	194	183	. 173	165	157
34	. 309	. 283	. 261	. 243	. 227	. 213	. 200	189	. 179	170	162
35	. 318	. 292	. 269	. 250	. 233	. 219	. 206	. 195	. 184	. 175	167
36	. 327	. 300	. 277	. 257	. 240	. 225	. 212	. 200	. 189	. 180	171
37	. 337	. 309	. 285	. 264	. 247	. 231	. 217	. 205	. 195	. 185	176
38	. 345	. 317	292	. 271	. 253	. 237	. 223	. 211	. 199	. 190	181
39	. 355	. 325	. 300	. 279	. 260	. 244	. 229	. 217	. 205	. 195	. 185
40	. 364	. 333	. 307	. 286	. 267	. 250	. 235	. 222	. 210	. 200	191

If the section of a girder is given, the safe uniformly distributed load (in tons of 2000 lbs .) can be obtained by dividing the net area of the flange by the coefficient given in the table.

140 THE PASSAIC ROLLING MILL COMPANY.

STEEL PLATE GIRDERS.

Safe Loads, in Tons of 2000 Lbs., Uniformily Distributed.
No stiffeners required
except at ends, over
supports only.

Girders equivalent to a $24^{\prime \prime}$ I beam.

$\begin{gathered} \text { Web. } \\ \text { Angles. } \end{gathered}$	$\begin{gathered} 24^{\prime \prime} \times \frac{3}{8}^{\prime \prime} \\ 5^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime} \times \frac{1}{2}^{\prime \prime} \end{gathered}$		$\begin{gathered} 26^{\prime \prime} \times \frac{3}{8} \\ 5^{\prime \prime} \times 3 \frac{1}{2}{ }^{\prime \prime} \times{ }_{1}^{7} 6^{\prime \prime} \end{gathered}$		$\begin{gathered} 28^{\prime \prime} \times \frac{3}{8} \\ 5^{\prime \prime} \times 3 \frac{1}{2}{ }^{\prime \prime} \times \frac{3}{8}{ }^{\prime \prime} \end{gathered}$		$\begin{gathered} 30^{\prime \prime} \times \frac{3}{8} \\ 5^{\prime \prime} \times 3^{\prime \prime} \times \frac{3}{8} \end{gathered}$	
Span, Centers of Bearings, Feet.								
20	47.2	5.3	46.5	5.8	45.1	6.2	47.7	6.4
21	44.9	5.0	44.3	5.5	49.9	5.9	45.5	6.1
22	42.9	4.8	42.3	5.2	41.0	5.7	43.4	5.8
23	41.0	4.6	40.4	5.0	39.2	5.4	41.5	5.5
24	39.3	4.4	38.8	4.8	37.6	5.2	39.8	5.3
25	37.7	4.2	37.2	4.6	36.1	5.0	38.2	5.1
26	36.3	4.1	35.8	4.4	34.7	4.8	36.7	4.9
27	34.9	3.9	34.4	4.3	33.4	4.6	35.4	4.7
28	33.7	3.8	33.2	4.1	32.2	4.5	34.1	4.5
29	32.5	3.6	32.1	4.0	31.1	4.3	32.9	4.4
30	31.4	3.5	31.0	3.8	30.0	4.2	31.8	4.2
31	30.4	3.4	30.0	3.7	29.1	4.0	30.8	4.1
32	29.4	3.3	29.1	3.6	28.2	3.9	29.8	4.0
33	28.6	3.2	28.2	3.5	27.3	3.8	28.9	3.9
34	27.7	3.1	27.4	3.4	26.5	3.7	28.1	3.7
35	26.9	3.0	26.6	3.3	25.8	3.6	27.3	3.6
36	26.2	2.9	25.8	3.2	25.0	3.5	26.5	3.5
37	25.5	2.8	25.1	3.1	24.4	3.4	25.8	3.4
38	24.8	2.8	24.5	3.0	23.7	3.3	25.1	3.3
39	24.2	2.7	23.8	2.9	23.1	3.2	24.5	3.3
40	23.6	2.6	23.3	2.9	22.5	3.1	23.9	3.2
$\begin{gathered} \text { Wgt.per } \\ \text { ft., lis. } \end{gathered}$	88	7.2	84	7.2	79	7.2	79	6.8

Safe loads given include weight of girder.
Weights of girders given include weight of rivet heads, but not stiffeners. Maximum fiber strain, $15,000 \mathrm{lbs}$. per square inch of net area, holes for $\frac{3}{4}^{\prime \prime}$ rivets being deducted.

STEEL PLATE GIRDERS.

	$\begin{gathered} 24^{\prime \prime} \times \frac{9}{16^{\prime \prime}} \\ 5^{\prime \prime} \times 5^{\prime \prime} \times \frac{1}{2}^{\prime \prime} \\ 12^{\prime \prime} \times \frac{1}{2} \end{gathered}$		$\left\|\begin{array}{c} 26^{\prime \prime} \times \frac{9}{16} \\ 5^{\prime \prime} \times 5^{\prime \prime} \times \frac{7}{16}{ }^{\prime \prime} \\ 12^{\prime \prime} \times \frac{1}{2^{\prime \prime}} \end{array}\right\|$		$\begin{gathered} 28^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime} \\ 5^{\prime \prime} \times 5^{\prime \prime} \times \frac{3}{8^{\prime \prime}} \\ 12^{\prime \prime} \times \frac{1}{2}^{\prime \prime} \end{gathered}$		$\begin{gathered} 30^{\prime \prime} \times \frac{1}{2}{ }^{\prime \prime} \\ 5^{\prime \prime} \times 5^{\prime \prime} \times \frac{3^{\prime \prime}}{8^{\prime \prime}} \\ 12^{\prime \prime} \times \frac{3}{8}{ }^{\prime \prime} \end{gathered}$	
Span, Centers of Bearings, Feet.								
20	90.8	3.6	93.6	3.9	93.6	4.3	91.7	4.6
21	86.5	3.4	89.1	3.7	89.1	4.1	87.3	4.3
22	82.5	3.3	85.1	3.6	85.0	3.9	83.4	4.1
23	78.9	3.1	81.3	3.4	81.3	3.7	79.7	3.9
24	75.6	3.0	78.0	3.3	78.0	3.6	76.4	3.8
25	72.6	2.9	74.8	3.1	74.8	3.4	73.3	3.6
26	69.8	2.8	72.0	3.0	72.0	3.3	70.5	3.5
27	67.2	2.7	69.3	2.9	69.3	3.2	67.9	3.4
28	64.8	2.6	66.8	2.8	66.8	3.1	65.5	3.3
29	62.6	2.5	64.5	2.7	64.5	3.0	63.2	3.1
30	60.5	2.4	62.4	2.6	62.4	2.9	61.1	3.0
31	58.6	2.3	60.4	2.5	60.4	2.8	59.2	2.9
32	56.7	2.2	58.5	2.5	58.5	2.7	57.3	2.8
33	55.0	2.2	56.7	2.4	56.7	2.6	55.6	2.8
34	53.4	2.1	55.0	2.3	55.0	2.5	53.9	2.7
35	51.9	2.0	53.5	2.3	53.5	2.4	52.4	2.6
36	50.4	2.0	52.0	2.2	52.0	2.4	50.9	2.5
37	49.1	1.9	50.6	2.1	50.6	2.3	49.6	2.5
38	47.8	1.9	49.2	2.1	49.2	2.3	48.3	2.4
39	46.6	1.8	48.0	2.0	48.0	2.2	47.0	2.3
40	45.4	1.8	46.8	2.0	46.8	2.1	45.8	2.3
$\left\lvert\, \begin{gathered} \text { Wgt.per } \\ \text { ft.,lbs. } \end{gathered}\right.$	158	5.1	153	5.1	143	5.1	136	5.1

[^2]142 THE PASSAIC ROLLING MILL COMPANY.

STEEL BOX GIRDERS.

Safe Loads, in Tons of 2000 Lbs., Uniformly Distributed.

Webs. Angles. Plates.	$\begin{array}{r} 24^{\prime \prime} \\ 5^{\prime \prime} \times \\ 14^{\prime \prime} \end{array}$		$\begin{array}{r} 26^{\prime \prime} \\ 5^{\prime \prime} \times 3 \\ 14^{\prime} \\ \hline \end{array}$	$\begin{aligned} & \times \frac{3}{8 \prime \prime} \\ & { }^{\prime \prime} \times \frac{7}{116} \\ & \times \frac{11}{11}{ }^{\prime \prime} \end{aligned}$	$\begin{array}{r} 28^{\prime \prime} \\ 5^{\prime \prime} \times 3 \\ 14^{\prime \prime} \end{array}$	$\begin{aligned} & \times \frac{3}{8 \prime \prime} \\ & { }^{\prime \prime} \times \frac{3}{8 \prime \prime} \\ & \times 1_{6}^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{array}{r} 30 \\ 5^{\prime \prime} \times \\ 14 \end{array}$	$\begin{aligned} & \times \frac{3}{8 \prime \prime} \\ & { }^{\prime \prime \prime} \times \frac{3}{3^{\prime \prime}} \\ & \times \frac{3^{\prime \prime \prime}}{8} \end{aligned}$
20	93.8	4.3	93.5	4.7	92.9	5.1	95.6	5.4
21	89.3	4.1	89.0	4.5	88.5	4.8	91.1	5.2
22	85.3	3.9	85.0	4.3	84.5	4.6	86.9	4.9
23	81.6	3.8	81.3	4.1	80.8	4.4	83.2	4.7
24	78.2	3.6	77.9	3.9	77.4	4.2	79.7	4.5
25	75.0	35	74.8	3.8	74.3	4.1	76.5	4.3
26	72.2	3.3	71.9	3.6	71.5	3.9	73.6	4.2
27	69.5	3.2	69.2	3.5	68.8	3.8	70.8	4.0
28	67.1	3.1	66.8	3.4	66.3	3.6	68.3	3.9
29	64.7	3.0	64.4	3.2	64.0	3.5	66.0	3.7
30	62.5	2.9	62.3	3.1	61.9	3.4	63.8	3.6
31	60.5	2.8	60.3	3.0	60.0	3.3	61.7	3.5
32	58.6	2.7	58.4	2.9	58.1	3.2	59.8	3.4
33	56.9	2.6	56.6	2.8	56.3	3.1	58.0	3.3
34	55.2	2.5	55.0	2.7	54.6	3.0	56.3	3.2
35	53.6	2.5	53.4	2.7	53.1	2.9	54.7	3.1
36	52.1	2.4	51.9	2.6	51.6	2.8	53.1	3.0
37	50.7	2.3	50.5	2.5	50.2	2.7	51.7	2.9
38	49.4	2.3	49.2	2.5	48.9	2.7	50.3	2.9
39	48.1	2.2	47.9	2.4	47.6	2.6	49.0	2.8
40	46.9	2.2	46.7	2.4	46.4	2.6	48.0	2.8
$\left\lvert\, \begin{array}{\|c\|c\|} \text { Wgt.per } \\ \text { ft.,lbs. } \end{array}\right.$	174	6.0	166	6.0	159	6.0	158	6.0

Safe loads given include weight of girder.
Weights of girders given include weight of rivet heads, but not stiffeners.
Maximum fiber strain, $15,000 \mathrm{lbs}$. per square inch of net area, holes for $\frac{3}{4}{ }^{\prime \prime}$ rivets being deducted.

THE PASSAIC ROLLING MILL COMPANY. 143

STEEL BOX GIRDERS.

Safe Loads, in Tons of 2000 Lbs., Uniformly Distributed.

No stiffeners required except at ends, over supports only.

Girders equivalent to a $24^{\prime \prime}$ Beam Box Girder.

Webs. Angles. Plates.	$\begin{gathered} 24^{\prime \prime} \times \frac{3}{8} \\ 5^{\prime \prime} \times 3 \frac{1 \frac{1}{2}^{\prime \prime}}{} \times \frac{1}{2}{ }^{\prime \prime} \\ 18^{\prime \prime} \times \frac{3}{4}{ }^{\prime \prime} \end{gathered}$		$\begin{gathered} 26^{\prime \prime} \times \frac{3^{\prime \prime}}{8} \\ 5^{\prime \prime} \times 3_{\frac{1}{2}}{ }^{\prime \prime} \times \frac{1}{2 \prime \prime} \\ 18^{\prime \prime} \times \frac{5}{8 \prime} \end{gathered}$		$\begin{gathered} 28^{\prime \prime} \times \frac{3}{8} \\ 5^{\prime \prime} \times 33^{11} \times \frac{7}{16^{\prime \prime}} \\ 18^{\prime \prime} \times 2^{9} 9^{\prime \prime} \end{gathered}$		$\begin{gathered} 30^{\prime \prime} \times \frac{3}{8 \prime \prime} \\ 5^{\prime \prime} \times 3 \frac{1}{2^{\prime \prime}} \times \frac{7}{16} \\ 18^{\prime \prime} \times \frac{1^{\prime \prime}}{2 \prime} \end{gathered}$	
Span, Centers of Bearings, Feet.								
20	130.7	5.9	129.5	6.3	128.4	6.8	131.7	7.3
21	124.5	5.6	123.3	6.0	122.3	6.5	125.4	7.0
22	118.8	5.4	117.7	5.8	116.8	6.2	119.7	6.7
23	113.6	5.1	112.6	5.5	111.7	6.0	114.5	6.4
24	108.9	4.9	107.9	5.3	107.0	5.7	109.7	6.1
25	104.5	4.7	103.6	5.1	102.8	5.5	105.3	5.9
26	100.5	4.5	99.6	4.9	98.8	5.3	101.3	5.6
27	96.8	4.4	95.9	4.7	95.1	5.1	97.5	5.4
28	93.3	4.2	92.5	4.5	91.7	4.9	94.1	5.2
29	90.1	4.1	89.3	4.4	88.6	4.7	90.8	5.1
30	87.1	3.9	86.3	4.2	85.6	4.6	87.8	4.9
31	84.3	3.8	83.5	4.1	82.9	4.4	85.0	4.7
32	81.7	3.7	80.9	4.0	80.3	4.3	82.4	4.6
33	79.2	3.6	78.5	3.8	77.8	4.1	79.8	4.4
34	76.9	3.5	76.2	3.7	75.6	4.0	77.5	4.3
35	74.7	3.4	74.0	3.6	73.4	3.9	75.2	4.2
36	72.6	3.3	71.9	3.5	71.4	3.8	73.2	4.1
37	70.6	3.2	70.0	3.4	69.4	3.7	71.2	4.0
38	68.8	3.1	68.1	3.3	67.6	3.6	69.3	3.9
39	67.0	3.0	66.4	3.3	65.9	3.5	67.5	3.8
40	65.3	2.9	64.7	3.2	64.2	3.4	65.8	3.7
$\begin{gathered} \text { Wgt.per } \\ \text { ft., lbs. } \end{gathered}$	216	7.7	206	7.7	196	7.7	193	7.7

Safe loads given include weight of girder.
Weights of girders given include weight of rivet heads, but not stiffeners.
Maximum fiber strain, $15,000 \mathrm{lbs}$. per square inch of net area, holes for ${ }_{4}^{3}{ }^{\prime \prime}$ rivets being deducted.

SUDDENLY APPLIED LOADS.

If a load is suddenly, that is, instantaneously, applied to a beam, it produces twice the strain that the same load would produce if at rest upon the beam. The safe suddenly applied load. is, therefore, only one-half the safe static load.

If the load is not only suddenly applied, but falls upon the beam from a height, it produces more than twice the strain that the same load statically applied would produce.

Let $P=$ the weight that falls upon the beam.
$\mathrm{h}=$ height of fall, in inches.
$\mathrm{P}^{\prime}=$ equivalent static load producing the same strain as that produced by the falling weight.
$\mathrm{d}=$ deflection of beam, in inches, produced by the weight, P, if statically applied.
$B=$ the weight of the beam together with its superimposed dead load, such as arches and flooring, whose combined mass tends to absorb the impact.

Then, if $m=\frac{I}{I+\frac{17 \mathrm{~B}}{35 \mathrm{P}}}$,

$$
P^{\prime}=P\left(I+\sqrt{\frac{2 m h}{d}+I}\right)
$$

From which the equivalent static load, P^{\prime}, is obtained, and the strain can then be computed in the ordinary manner.

The uniformly distributed static load, equivalent to the falling weight, can be obtained in the following manner:-

Let $\mathrm{W}^{\prime}=$ equivalent uniformly distributed load.
$\mathrm{W}=$ safe uniformly distributed load on beam, from the tables.
$\mathrm{D}=$ deflection, in inches, under safe uniformly distributed load.

Then, $W^{\prime}=2 P\left(I+\sqrt{\frac{5 W h m}{4 D D}+I}\right)$
In applying these formulæ P^{\prime} and W^{\prime} will be in tons or pounds according as the weights are taken in tons or pounds.

LINTELS.

Lintels of steel shapes or of cast iron are employed to span openings in walls over doors and windows. It is generally necessary that the lintels should have a flat soffit. Where the load to be carried is small, steel channeis, laid flat, furnish a very satisfactory lintel on moderate spans. The table on page 146 gives the safe uniformly distributed loads, in tons of $2,000 \mathrm{lbs}$., for Passaic steel channels used as lintels, by which the channel required for any given span and load may be easily selected.

Sometimes the load to be carried by a lintel consists of a uniformly distributed load from the wall above and also the concentration from a floor joist which rests upon the wall at or near the center of the span. In such instances, the concentrated load must be multiplied by 2 , the result being considered as an equivalent uniform load, which, added to the regular distributed load, may be taken as the equivalent total uniformly distributed load. Thus, if a lintel spanning an opening of 3 ft . is to carry a uniformly distributed load of 2 tons and a concentrated load of 2 tons at the center of the span, the concentrated load multiplied by 2 and added to the distributed load gives 6 tons as the equivalent distributed load. By referring to the table, it will be found that a $15^{\prime \prime} \times 45 \mathrm{lb}$. steel channel, which has a safe load of 5.97 tons, is required.

Where the loads are considerable and the use of beam girders is not advisable, cast iron lintels are used. The table on page I47 gives the coefficients of strength, in tons of $2,000 \mathrm{lbs}$., for cast iron lintels, by which the safe uniformly distributed loads, in tons, for any given span may be found by dividing the coefficient given by the span in ft . Thus, if it is required to find the safe uniformly distributed load on a cast iron lintel, $12^{\prime \prime}$ wide, $10^{\prime \prime}$ deep and $\mathrm{I}^{\prime \prime}$ metal, on a span of 6 ft ., by referring to the table, the coefficient of strength given for this lintel is 72.2 tons, which divided by the span gives the safe load as 12.03 tons.

If a part of the load is concentrated, it must first be multiplied by 2 , and the result considered as the equivalent uniform load. The proper lintel required for any given span and load may be found by multiplying the equivalent uniform load, in tons, by the span, in feet, the result being the coefficient required; then, by reference to the table, the lintel, having the required coefficient of strength, can be easily selected. Thus, if it is required to select a lintel carrying a $20^{\prime \prime}$ wall on a span of 8 ft . to support a uniformly distributed load of 5 tons, and a concentrated load of 5 tons at the center, the method is as follows. The concentrated load must first be reduced to an equivalent uniform load by multiplying it by 2 , and added to the regular uniform load, giving is tons as the equivalent uniform load on the span which, multiplied by the span in feet, gives the coefficient required as I20 tons. Then, referring to the table it will be found that a lintel, $20^{\prime \prime}$ wide, $10^{\prime \prime}$ deep and $\mathrm{I}^{\prime \prime}$ metal, which has a coefficient of 125.4 tons, will be required.

SAFE LOADS, UNIFORMLY DISTRIBUTED, FOR PASSAIC STEEL CHANNELS,

IN TONS OF 2000 LBS.,
x. x WEB HORIZONTAL. x. $-x$. Safe loads given, include weight of channel.

$\stackrel{\dot{n}}{=}$		Span in feet.									
	号范	2	3	4	5	6	7	8	9	10	
1550	20.2	10.1	6.73	5.05	4.04	3.37	2.89	2.53	2.24	2.02	. 0028
1540	17.9	9.00	5.97	4.48	3.58	2.98	2.56	2.24	1.99	1.79	. 0030
1533	16.3	8.205	5.43	4.08	3.26	2.71	2.33	2.04	1.81	1.63	1. 0032
$\overline{12} \overline{35}$	15.0	7.50	5.00	$\overline{3.75}$	3.0	2.50	2.14	1.88	1.67	1.50	. 0032
1227	12.9	6.45	4.303	3.23	2.58	2.15	1.84	1.61	1.43	1.29	. 0035
1220	8.97	4.49	2.992	2.24	1.79	1.50	1.28	1.12	1.00	. 90	. 0038
$\overline{10} \overline{30}$	11.7	5.85	90	2.93	2.34	1.95	1.67	1.46	1.30	1.17	. 0034
1020	9.33	4.67]	3.112	2.33	1.87	1.56	1.33	1.17	1.04	. 93	. 0039
1015	6.66	3.33	2.221	1.67	1.33	1.11	. 95	. 83	. 74	. 67	. 0041
$9 \overline{21}$	8.21	4.11	2.74	$\overline{2} .05$	1.64	1.37	1.17	1.03	. 91	. 82	. 0040
916	7.25	3.63	2.421	1.81	1.45	1.21	1.04	. 91	. 81	.73	. 0044
913	4.90	2.45	1.631	1.23	. 98	. 82	. 70	. 61	. 54	. 49	. 0046
$8 \overline{17}$	5.50	2.75	$\overline{1.83} 1$	1.38	$\overline{1.10}$. 93	. 79	. 69	. 61	. 55	. 0046
813	4.80	2.401	1.601	1.20	. 96	. 80	. 69	. 60	. 53	. 48	. 0051
810	3.41	1.71	1.14	. 85	. 68	. 57	. 49	. 43	. 38	. 34	. 0053
$7 \overline{17}$	5.92	2.96	1.98	1.48	1.18	. 99	. 85	. 74	. 66	. 59	. 0047
713	5.03	2.52	1.68	1.26	1.01	. 84	. 72	. 63	. 56	. 50	. 0058
79	2.94	1.47	. 98	. 74	. 59	. 49	. 42	. 37	. 33	. 29	. 0056
$6 \overline{20}$	8.91	4.46	2.97	2.23	1.78	1.49	1.27	1.11	. 99	. 89	. 0047
617	7.84	3.922	2.611	1.96	1.57	1.31	1.12	. 98	. 87	. 78	. 0051
612	4.80	2.401	1.601	1.20	. 96	. 80	. 69	. 60	. 53	. 48	. 0054
68	2.67	1.34	. 89	. 67	. 53	. 45	. 38	. 33	. 30	. 27	. 0058
$5 \overline{12}$	3.89	1.95	$\overline{1.30}$. 97	. 78	. 65	. 56	. 49	. 43	.39	. 00055
59	3.20	1.60	1.07	. 80	. 64	. 53	. 46	. 40	. 36	. 32	. 0062
56	1.71	. 86	. 57	. 43	. 34	. 29	. 24	. 21	. 19	. 17	. 0068
$4 \overline{10}$	3.36	1.68	$\overline{1.12}$. 84	. 67	. 56	. 48	. 42	. 37	.34	. 0059
48	2.88	1.44	. 96	. 72	. 58	. 48	. 41	. 36	. 32	. 29	. 0065
45	1.39	.70	. 46	. 35	. 28	. 23	. 20	. 17	. 15	. 14	. 0073

Safe loads, uniformly distributed, in tons of $2,000 \mathrm{lbs}$, for intermediate spans can be obtained by dividing the Coefficient of Strength by the span, in feet. Deflection, in inches, under tabular load, can be obtained by multiplying the Deffection Coefficient by the square of the span, in feet.

COEFFICIENTS OF STRENGTH FOR CAST IRON LINTELS,

IN TONS OF 2000 LBS.

SINGLE WEB LINTEL.
DOUBLE WEB LINTEL.

Width of flange, Ins.	Depth of lintel, Ins.	Thickness of metal, in inches.					No. of Webs.
		$\frac{3}{4}$	$\frac{7}{8}$	1	118	114	
28	6	59.5	64.9	69.8	74.6	77.8	2
/	8	95.5	106.2	115.0	123.0	130.5	2
"	10	140.5	150.5	164.8	176.2	192.0	2
"	12	171.4	196.5	216.1	236.3	256.7	2
"	16	235.8	272.5	307.4	342.0	375.0	2
24	6	52.8	57.4	62.6	66.6	70.0	2
"	8	83.4	93.4	102.4	109.6	117.0	2
"	10	116.0	130.4	144.4	156.2	167.6	2
"	12	150.4	168.6	189.6	207.0	223.0	2
"	16	225.0	257.0	286.0	316.5	345.0	2
20	6	47.2	51.4	55.1	58.5	62.0	2
/	8	72.6	84.7	89.5	96.0	102.5	2
"	10	100.5	113.2	125.4	136.0	146.8	2
"	12	122.6	141.8	158.0	174.7	189.5	2
"	16	196.4	224.7	251.4	277.2	301.5	2
16	6	33.0	35.1	37.7	40.3	41.8	1
/	8	52.1	57.7	62.8	67.2	71.6	1
"	10	72.2	81.2	89.6	96.8	104.0	1
"	12	92.4	106.1	117.5	128.8	138.8	1
"	16	139.4	159.0	177.8	196.0	214.0	1
12	6	26.4	28.7	31.3	33.3	35.0	1
"	8	41.7	46.7	51.2	54.8	58.5	1
"	10	58.0	65.2	72.2	78.1	83.8	1
"	12	75.2	84.3	94.8	103.5	111.5	1
8	6	19.7	21.7	23.4	24.9	26.4	1
/	8	30.6	34.4	37.7	40.7	43.3	1
/	10	42.6	48.1	53.0	57.8	62.9	1
"	12	55.4	62.4	70.0	76.7	83.5	1

Coefficients are calculated for a maximum tensile strain of $3,000 \mathrm{lbs}$. per square inch. The safe uniformly distributed load, in tons, for any given span may be found by dividing the coefficient, as above, by the span in feet.

COLUMNS.

Columns of steel shapes riveted together are largely used in the construction of buildings. Several types of built columns are shown on page 42. The columns generally used in building construction are the Plate and Angle columns, Figs. 2 and 3; the Plate and Channel columns, Figs. 8 and 9; and the \mathbf{Z}-Bar columns, Figs. II and 12. Where these do not furnish sufficient section for carrying the loads, the column shown in Fig. 5 can be advantageously used and made large enough for very heavy loads by increasing the thickness of the material. The manner of connecting the segments of the columns together, and the mode of attaching beams and girders is illustrated on page 43. Abutting segments of columns should be thoroughly connected in a manner to preserve the continuity of strength, thus adding to the stiffness of the steel frame work.

The strength of a column depends upon its shape and length. Long columns have less strength than shorter columns of the same size for the reason that they are liable to fail by lateral flexure, and of two columns having the same area and length, the one in which the material is placed at a greater distance from the center will develop greater strength. If all the material in the cross section were concentrated at a distance from the neutral axis equal to the radius of gyration, the resistance to flexure would be the same as for the material distributed over the cross section. Formulæ for the strength of columns therefore take into consideration the length of the column and the radius of gyration of the section. The manner of securing the ends of the columns also has an appreciable effect upon their strength. Columns fixed so firmly at the ends that they are liable to fail in the body of the column before rupturing their end connections develop greater strength than columns connected by means of pins through the ends. Columns with square ends develop less ultimate strength than if the ends are firmly fixed, but greater than if the ends are pin connected. Medium steel columns develop practically a uniform strenoth for all lengths up to 50 radii of
gyration, and soft steel columns develop practically a uniform strength for all lengths up to 30 radii of gyration, the ultimate for both grades of steel being about $48,000 \mathrm{lbs}$. per sq. in., up to the lengths indicated.

The following straight-line formulæ represent very closely the ultimate strength, in lbs. per sq. in., of columns whose lengths are between 50 and 150 radii of gyration,

	Medium Steel.	Soft Steel.
Fixed Ends,	$60,000-210 \frac{l}{\mathrm{r}}$	$54,000-185 \frac{l}{\mathrm{r}}$
Square Ends,	$60,000-230 \frac{l}{\mathrm{r}}$	$54,000-200 \frac{l}{\mathrm{r}}$
Pin Ends,	$60,000-260 \frac{l}{\mathrm{r}}$	$54,000-225 \frac{l}{\mathrm{r}}$

where $l=$ length of column, and $r=$ least radius of gyration, both in inches. Columns used in building construction may be considered as having square ends, as pin connections are seldom used; and as it is usual to allow a factor of safety of 4 for such columns, the following formulæ may, therefore, be taken as giving the allowable strain, in lbs. per sq. in., on square ended columns for building construction.

> Medium Steel $\left\{\begin{array}{l}12,000 \text { for lengths up to } 50 \text { radii of gyration. } \\ 15,000-57 \frac{l}{\mathrm{r}} \text { for lengths over } 50 \text { radii. }\end{array}\right.$

Soft Steel

$$
\left\{\begin{array}{l}
12,000 \text { for lengths up to } 30 \text { radii of gyration. } \\
13,500-50 \frac{l}{\mathrm{r}} \text { for lengths over } 30 \text { radii. }
\end{array}\right.
$$

No column should be used having a length greater than 150 radii of gyration, or whose length exceeds 45 times the least dimension of the column.

The following tables of safe loads on steel columns have been calculated from the foregoing formulæ. The tables for the safe loads on Angle and I Beam columns have been calculated for soft steel. The tables of safe loads for Plate and Angle columns, Channel and Plate columns and \mathbf{Z} Bar columns have been calculated for medium steel, that being the grade of steel advisable to use for such columns.

The weights given for the various columns do not include rivets or connections of any kind. Rivets should be spaced not exceeding $3^{\prime \prime}$ centers at the ends of a column for a distance equal to twice the width of the column. The distance between centers of rivets, in the line of strain, should not exceed 16 times the least thickness of metal of the parts joined; and the distance between rivets, at right angles to the line of strain, should not exceed 32 times the least thickness of metal.

The table on page 153 gives the ultimate strength of wrought iron columns calculated from Gordon's formulæ. This table may be of use in determining the safety of existing structures of wrought iron. Steel columns are now exclusively used instead of wrought iron, because of their superiority of strength without increased cost.

Cast iron columns are sometimes used in buildings of moderate height, but their use is not to be recommended for buildings where the iron framework must be rigid and afford sufficient lateral stability. The manner in which cast iron columns are connected together, and the mode of attaching beams and girders to them does not permit obtaining sufficient rigidity for such buildings. Cast iron columns have more or less internal strains due to the unequal cooling of the metal in the moulds, which makes it necessary to employ a large factor of safety. No cast iron column should be used in a building with a factor of safety less than 8 . Particular attention should be paid to the designing of the cast iron brackets for supporting the beams and girders, in order that they may not be subjected to large internal strains making them liable to break off under a sudden shock. The tables on pages 204-206, inclusive, furnish an easy method of determining the safe loads on round and square cast iron columns. Where the loads are eccentrically applied, producing bending strains in the columns, cast iron columns are inadmissible because of their inability to resist such strains.

The safe loads given in the tables are calculated for concentric loading, i. e., the center of gravity of the load being coincident with the center of gravity of the column. Where this is not the case, the load being greater on one side of the column than on the other, or the entire load being applied on one side only of the column, the effect of the eccentricity must be in-
vestigated. If the unbalanced load, in lbs., is multiplied by the distance of its point of application from the center of the column, in inches, the result is the bending moment in inch lbs., which, being divided by the section modulus of the column, gives the strain per sq. in. on the extreme fiber produced by the bending. The load on the column produces a uniform compressive strain on the entire cross section to which must be added the bending strain, the sum being the maximum strain on the extreme fiber. Where the loads are very eccentrically applied, the bending effect is very considerable and must never be neglected. If the maximum fiber strain, due to direct compression and bending, exceeds the allowable strains per sq. in. on the column by more than 25%, the section of the column should be increased. Thus if the allowable strain on a column from direct load is $10,000 \mathrm{lbs}$. per sq. in., the combined bending and compression should not exceed $\mathbf{1 2 , 5 0 0} \mathrm{lbs}$. per sq. in.

Tables are given of the properties of all columns, for which safe loads are calculated, by means of which the effects of eccentric loading are easily calculated.

EXAMPLE.

A $12^{\prime \prime}$ channel column, 16 ft . long, consisting of two $\mathbf{1 2} 2^{\prime \prime} \times$ 20 lb . channels and two $14^{\prime \prime} \times \frac{3}{8}^{\prime \prime}$ plates sustains a total load of 100 tons of which 40 tons are unbalanced by opposing loads. Find the fiber strain, the point of application of the eccentric load being $6 \frac{3}{8} /$ from the center of the column, producing bending around the axis XX.

Referring to the table of Properties of Channel Columns, on page 162, the area of the column is found to be 22.3 sq . ins., and its Section Modulus around the axis XX is found to be 102. The calculation then is as follows:

Bending moment $=80,000 \times 6 \frac{38^{\prime \prime}}{}=510,000 \mathrm{in} . \mathrm{lbs}$. Strain due to bending, lbs. per sq. in. $510,000 \div$ Section modulus $(=102)=5,000$
Strain due to direct compression,

$$
\begin{aligned}
200,000 \div \text { Area }(=22.3) & =8,960 \\
\text { Maximum Fiber Strain, } & =\overline{13,960}
\end{aligned}
$$

Columns can be proportioned for bending and compression in the following manner, where P_{c} is a central load and P_{e} an eccentric load applied at the distance z from the neutral axis:

$\mathrm{W}=$ total load $=\mathrm{P}_{\mathrm{c}}+\mathrm{P}_{\mathrm{e}}$
$\mathrm{k}=$ eccentricity $=\mathrm{z} \div \mathrm{b}$.
$\mathrm{A}=$ area of column, square inches.
$\mathrm{r}=$ radius of gyration in direction of bending.
$\mathrm{S}=$ allowable strain persq.in. for direct compression.
$\mathrm{S}^{\prime}=$ allowable strain per sq. in. combined compression and bending.
$W^{\prime}=$ equivalent central load.
$C=\left(\frac{b}{r}\right)^{2}$
Then, $\begin{aligned} \mathrm{A} & =\frac{\left(\mathrm{W}+\mathrm{CkP}_{\mathrm{e}}\right)}{\mathrm{S}^{\prime}}=\frac{\frac{4}{5}\left(\mathrm{~W}+\mathrm{CkP} \mathrm{P}_{\mathrm{e}}\right)}{\mathrm{S}} \text { when } \mathrm{S}^{\prime}=1_{4}^{\frac{1}{4} \mathrm{~S} .} \\ \mathrm{W}^{\prime} & =\frac{\mathrm{S}}{\mathrm{S}^{\prime}}\left(\mathrm{W}+\mathrm{CkP} \mathrm{P}_{\mathrm{e}}\right)=\frac{4}{5}(\mathrm{~W}+\mathrm{CkP}) \text { when } \mathrm{S}^{\prime}=1 \frac{1}{4} \mathrm{~S} .\end{aligned}$
The equivalent load W^{\prime} may then be used in selecting the proper column from the tables of safe loads. If W^{\prime} is less than W the effect of bending is to be neglected as the column must not be proportioned for a load less than W. If the bending moment, M, is given substitute $\frac{M}{b}$ in the formulae for $\mathrm{k} \mathrm{P}_{\mathrm{e}}$. The bending moment must be in inch lbs. or inch tons according as W and S are taken in lbs. or tons.

The coefficient C varies but slightly for the same type of column. Values are given in the table from which it can be assumed and an approximate column selected. The exact value may then be found and the correction made, if necessary, in the equivalent load.

In the example on the previous page, $\mathrm{k}=1$ and assuming $\mathrm{C}=1.40$

$$
\mathrm{W}^{\prime}=\frac{4}{5}(100+1.40 \times 1 \times 40)=124.8 \text { tons. }
$$

If the length of the column is taken as 30 ft ., referring to the table on page 191, a column made of $2-12^{\prime \prime} \times 20 \mathrm{lb}$. channels and $2-14^{\prime \prime} \times \frac{7}{16}^{\prime \prime}$ plates will be required which has a safe load of 125 tons for a length of 30 ft .

APPROXIMATE VALUES OF C FOR VARIOUS COLUMNS.

ULTIMATE STRENGTHS OF WROUGHT IRON COLUMNS.

$\begin{gathered} \text { For Fixed Ends. } \\ 40,000 \\ \hline \end{gathered}$		For Square Ends. 40,000			$\begin{gathered} \text { For Pin Ends. } \\ 40,000 \\ \hline \end{gathered}$		
$1+\frac{l^{2}}{40,000 r^{2}}$		$1+\frac{1}{30,000 r^{2}}$			$1+\frac{l^{2}}{20,000 r^{2}}$		
$\boldsymbol{l}=$ length in inches.			$r=$ least radius of gyration in inches.				
Ratio	Ultimate Strength, lbs. per sq. in.			Ratio of Length to Diameter.			
Length Radius of Gyration. $\frac{l}{r}$	Fixed Ends.	Square	Pin Ends.		$\underset{\substack{\text { Box } \\ \text { Column. }}}{][}$		$\underset{71}{\underset{71}{12}}$
30	39,100	38,800	38,300	9	10	12	7
35	38,800	38,400	37,700	10	12	13	
40	38,500	38,000	37,000	12	13	15	
45	38,100	37,500	36,300	13	15	17	10
50	37,700	36,900	35,600	15	17	19	11
55	37,200	36,300	34,800	16	18	21	12
60	36,700	35,700	33,900	18	20	23	13
65	36,200	35,100	33,000	19	22	25	14
70	35,600	34,400	32,100	21	23	27	15
75	35,100	33,700	31,200	22	25	29	17
80	34,500	33,000	30,300	24	27	31	18
85	34,000	32,200	29,400	25	28	33	19
90	33,300	31,500	28,500	26	30	35	20
95	32,600	30,800	27,600	28	32	36	21
100	32,000	30,000	26,700	29	33	38	22
105	31,400	29,300	25,800	31	35	40	23
110	30,700	28,500	24,900	32	37	42	24
115	30,100	27,800	24,100	34	38	44	25
120	29,300	27,000	23,300	35	40	46	27
125	28,800	26,300	22,500	37	42	48	28
130	28,100	25,600	21,700	38	43	50	29
135	27,500	24,900	20,900	40	45	52	30
140	26,800	24,200	20,200	41	47	54	31
145	26,200	23,500	19,500	43	48	56	32
150	25,600	22,900	18,800	44	50	58	33

For safe quiescent loads, as in buildings, divide above values by 4.

154 THE PASSAIC ROLLING MILL COMPANY.

ULTIMATE STRENGTHS OF SOFT AND MEDIUM STEEL COLUMNS,

Calculated from the following Formulæ.

SOFT STEEL.
Fixed Ends $=54,000-185 \frac{l}{r}$
Square Ends $=54,000-200 \frac{l}{r}$
Pin Ends $=54,000-225 \frac{l}{r}$
$\boldsymbol{l}=$ length in inches. $\quad \boldsymbol{r}=$ least radius of gyration in inches.

Ratio of Length to Radius of Gyration,$\frac{l}{r}$	Ultimate Strength, lbs. per sq. in.					
	Soft Steel.			Medium Steel.		
	Fixed Ends.	Square Ends.	Pin Ends.	Fixed Ends.	Square Ends.	$\begin{gathered} \text { Pin } \\ \text { Ends. } \end{gathered}$
30	48,500	48,000	47,300			
35	47,500	47,000	46,100			
40	46,600	46,000	45,000			
45	45,700	45,000	43,900			
50	44,800	44,000	42,800	49,500	48,500	47,000
55	43,800	43,000	41,600	48,500	47,400	45,700
60	42,900	42,000	40,500	47,400	46,200	44,400
65	42,000	41,000	39,400	46,400	45,100	43,100
70	41,100	40,000	38,300	45,300	43,900	41,800
75	40,100	39,000	37,100	44,300	42,800	40,500
80	39,200	38,000	36,000	43,200	41,600	39,200
85	38,300	37,000	34,900	42,200	40,500	37,900
90	37,400	36,000	33,800	41,100	39,300	36,600
95	36,400	35,000	32,600	40,100	38,200	35,300
100	35,500	34,000	31,500	39,000	37,000	34,000
105	34,600	33,000	30,400	38,000	35,900	32,700
110	33,700	32,000	29,300	36,900	34,700	31,400
115	32,700	31,000	28,100	35,900	33,600	30,100
120	31,800	30,000	27,000	34,800	32,400	28,800
125	30,900	29,000	25,900	33,800	31,300	27,500
130	30,000	28,000	24,800	32,700	30,100	26,200
135	29,000	27,000	23,600	31,700	29,000	24,900
140	28,100	26,000	22,500	30,600	27,800	23,600
145	27,200	25,000	21,400	29,600	26,700	22,300
150	26,300	24,000	20,300	28,500	25,500	21,000

For safe quiescent loads, as in buildings, divide above values by 4 .

RADII OF GYRATION FOR TWO ANGLES

PLACED BACK TO BACK.

EQUAL LEGS.
Radii of Gyration given correspond to directions of the arrow-heads.

Size, inches.	Thickness, inches.	Radii of Gyration.			
		ro	r_{1}	\mathbf{r}_{2}	\mathbf{r}_{3}
$\begin{aligned} & 6 \times 6 \\ & 6 \times 6 \end{aligned}$	${ }^{7}$	$\begin{aligned} & 1.87 \\ & 1.88 \end{aligned}$	$\begin{aligned} & 2.64 \\ & 2.49 \end{aligned}$	$\begin{aligned} & 2.83 \\ & 2.66 \end{aligned}$	$\begin{aligned} & 2.92 \\ & 2.75 \end{aligned}$
$\begin{aligned} & 5 \times 5 \\ & 5 \times 5 \end{aligned}$	${ }^{\frac{3}{4}}$	$\begin{aligned} & 1.55 \\ & 1.56 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 2.09 \end{aligned}$	$\begin{aligned} & 2.38 \\ & 2.27 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 2.36 \end{aligned}$
$\begin{aligned} & 4 \times 4 \\ & 4 \times 4 \end{aligned}$	$\frac{13}{18}$ $\frac{5}{16}$	1.24 1.24	$\begin{aligned} & 1.8: 3 \\ & 1.67 \end{aligned}$	$\begin{aligned} & 2.03 \\ & 1.85 \end{aligned}$	2.12 1.94
$\begin{aligned} & 3 \frac{1}{2} \times 3 \frac{1}{2} \\ & 3 \frac{1}{2} \times 3 \frac{1}{2} \\ & 3 \end{aligned}$	${ }^{\frac{5}{8}} \frac{5}{16}$	$\begin{aligned} & 1.04 \\ & 1.08 \end{aligned}$	1.51 1.46	1.70 1.65	1.81 1.74
$\begin{aligned} & 3 \times 3 \\ & 3 \times 3 \end{aligned}$	${ }^{\frac{5}{8}}$	$\begin{aligned} & .94 \\ & .93 \end{aligned}$	1.40 1.25	1.59 1.43	1.69 1.53
21 $2 \times 2 \frac{1}{2}$ $2 \frac{1}{2} \times 2 \frac{1}{2}$	${ }^{\frac{1}{2}}$. 76	$\begin{aligned} & 1.12 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 1.31 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 1.42 \\ & 1.34 \end{aligned}$
$\begin{aligned} & 2 \frac{1}{4} \times 2 \frac{2}{4} \\ & 2 \frac{1}{4} \times 2 \frac{1}{4} \end{aligned}$	${ }^{\frac{1}{2}} \frac{}{3}$. 70	$\begin{array}{r} 1.05 \\ .94 \end{array}$	$\begin{aligned} & 1.25 \\ & 1.12 \end{aligned}$	1.35 1.22
$\begin{aligned} & 2 \times 2 \\ & 2 \times 2 \end{aligned}$	${ }^{\frac{1}{2}} \frac{}{} \frac{3}{16}$	$\begin{aligned} & .62 \\ & .62 \end{aligned}$	$.95$	$\begin{aligned} & 1.15 \\ & 1.03 \end{aligned}$	1.26 1.13

156 THE PASSAIC ROLLING MILL COMPANY.

RADII OF GYRATION FOR TWO ANGLES

PLACED BACK TO BACK, LONG LEG VERTICAL.

UNEQUAL LEGS.
Radii of Gyration given correspond to directions of the arrow-heads.

Size, inches.	Thickness, inches.	Radii of Gyration.			
		r_{0}	r_{1}	r_{2}	r_{3}
$\begin{aligned} & 6 \times 4 \\ & 6 \times 4 \end{aligned}$	${ }^{\frac{7}{8}} \frac{3}{8}$	$\begin{aligned} & 1.95 \\ & 1.93 \end{aligned}$	$\begin{aligned} & 1.68 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 1.87 \\ & 1.67 \end{aligned}$	$\begin{aligned} & 1.97 \\ & 1.76 \end{aligned}$
$\begin{aligned} & 5 \times 3 \frac{1}{2} \\ & 5 \times 3 \frac{1}{2} \\ & 5 \times 3 \\ & 5 \times 3 \end{aligned}$	$\begin{aligned} & \frac{3}{4} \\ & \\ & \\ & \frac{3}{8} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.59 \\ & 1.60 \\ & 1.62 \\ & 1.61 \end{aligned}$	1.44 1.34 1.23 1.09	1.63 1.51 1.42 1.26	1.73 1.61 1.52 1.36
$\begin{aligned} & 4 \frac{1}{2} \times 3 \\ & 4 \frac{1}{2} \times 3 \end{aligned}$	$\frac{5}{16}$	$\begin{aligned} & 1.43 \\ & 1.45 \end{aligned}$	1.25 1.13	1.44 1.31	1.55 1.40
$\begin{aligned} & 4 \times 3 \frac{1}{2} \\ & 4 \times 3 \frac{1}{2} \\ & 4 \times 3 \\ & 4 \times 3 \end{aligned}$	$\begin{aligned} & \frac{3}{4} \\ & \frac{5}{8} \\ & \frac{5}{16} \\ & \\ & \frac{5}{16} \end{aligned}$	$\begin{aligned} & 1.24 \\ & 1.26 \\ & 1.23 \\ & 1.27 \end{aligned}$	1.53 1.41 1.20 1.17	1.72 1.58 1.39 1.35	1.83 1.69 1.50 1.45
$\begin{aligned} & 3 \frac{1}{2} \times 3 \\ & 3 \frac{1}{2} \times 3 \\ & 3 \\ & 33_{2}^{\frac{1}{2}} \times 2 \frac{1}{2} \times 2^{\frac{1}{2}} \\ & 3 \frac{1}{2} \end{aligned}$	$\begin{array}{cc} \frac{5}{8} & \frac{5}{5} \\ \frac{9}{16} 16 \\ \frac{1}{16} \end{array}$	$\begin{aligned} & 1.06 \\ & 1.10 \\ & 1.10 \\ & 1.12 \end{aligned}$	1.27 1.21 1.04 .96	1.46 1.39 1.23 1.17	1.56 1.49 1.34 1.24
$\begin{aligned} & 3 \times 2 \frac{1}{1} \\ & 3 \times 2 \frac{1}{2} \\ & 3 \times 2 \\ & 3 \times 2 \end{aligned}$	$\begin{array}{cc} \frac{9}{16} & \\ \frac{1}{4} \\ \frac{1}{2} \\ & \frac{1}{4} \end{array}$	$\begin{aligned} & .93 \\ & .95 \\ & .92 \end{aligned}$	1.07 1.00 .80 .75	$\begin{array}{r} 1.27 \\ 1.18 \\ 1.00 \\ .93 \end{array}$	1.37 1.28 1.10 1.04
$2 \frac{1}{2} \times 2$ 2×2 $2{ }_{2}^{1} \times 2$ $2 \frac{1}{4} \times 1 \frac{1}{2}$ $2 \frac{1}{4} \times 1 \frac{1}{2}$	$\begin{aligned} & \frac{1}{2} \\ & { }^{\frac{5}{16}} \frac{3}{16} \\ & \frac{3}{16} \end{aligned}$.80 .79 .70 .72	.86 .79 .60 .57	1.06 .97 .79 .75	1.16 1.07 .91 .86

RADII OF GYRATION FOR TWO ANGLES
 PLACED BACK TO BACK, SHORT LEG VERTICAL.

UNEQUAL LEGS.
Radii of Gyration given correspond to direction of the arrow-heads.

Size, inches.	Thickness, inches.	Radii of Gyration.			
		r	\mathbf{r}_{1}	\mathbf{r}_{2}	\mathbf{r}_{3}
$\begin{aligned} & 6 \times 4 \\ & 6 \times 4 \end{aligned}$	${ }^{\frac{7}{8}} \frac{3}{8}$	$\begin{aligned} & 1.19 \\ & 1.17 \end{aligned}$	$\begin{aligned} & 2.94 \\ & 2.74 \end{aligned}$	$\begin{aligned} & 3.13 \\ & 2.92 \end{aligned}$	$\begin{aligned} & 3.23 \\ & 3.02 \end{aligned}$
$\begin{aligned} & 5 \times 3 \frac{1}{2} \\ & 5 \times 3 \frac{1}{2} \\ & 5 \times 3 \\ & 5 \times 3 \end{aligned}$	$\begin{array}{ll} \frac{3}{4} & \\ & \\ \frac{3}{8} \\ \frac{3}{4} \\ & \frac{5}{16} \end{array}$	1.01 1.02 .86 .85	2.39 2.27 2.50 2.33	2.58 2.45 2.69 2.51	2.68 2.55 2.79 2.61
$\begin{aligned} & 4 \frac{1}{2} \times 3 \\ & 4 \frac{1}{2} \times 3 \end{aligned}$. 86	2.18 2.06	2.38 2.25	2.46 2.33
$\begin{aligned} & 4 \times 3 \frac{1}{2} \\ & 4 \times 3 \frac{1}{2} \\ & 4 \times 3 \\ & 4 \times 3 \end{aligned}$	$\frac{5}{8} \begin{aligned} & \frac{5}{16} \\ & \frac{5}{16} \end{aligned}$	$\begin{array}{r} 1.05 \\ 1.07 \\ .83 \\ .89 \end{array}$	$\begin{aligned} & 1.85 \\ & 1.73 \\ & 1.84 \\ & 1.79 \end{aligned}$	$\begin{aligned} & 2.04 \\ & 1.91 \\ & 2.03 \\ & 1.97 \end{aligned}$	2.14 2.00 2.13 2.07
$3 \frac{1}{2} \times 3$ $3{ }^{\frac{1}{2}} \times 3$ $3{ }^{\frac{1}{2} \times 2} \times 2$ $3 \frac{1}{2} \times 2 \frac{1}{2}$	$\begin{array}{ll} \frac{5}{8} & \frac{5}{16} \\ \frac{9}{16} \\ & \\ \frac{1}{4} \end{array}$.87 .90 .72 .74	1.57 1.53 1.66 1.58	1.76 1.71 1.85 1.76	1.87 1.81 1.95 1.86
$\begin{aligned} & 3 \times 2 \frac{1}{2} \\ & 3 \times 2 \frac{1}{2} \\ & 3 \times 2 \\ & 3 \times 2 \end{aligned}$	$\begin{array}{cc} \frac{9}{16} & \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{array}$.73 .75 .55 .57	1.40 1.32 1.42 1.39	$\begin{aligned} & 1.59 \\ & 1.49 \\ & 1.62 \\ & 1.57 \end{aligned}$	1.69 1.60 1.72 1.68
$2 \frac{1}{2} \times 2$ $2 \frac{1}{2} \times 2$	${ }^{\frac{1}{2}} \frac{3}{16}$. 58	$\begin{aligned} & 1.18 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 1.37 \\ & 1.28 \end{aligned}$	1.48 1.38

158 THE PASSAIC ROLLING MILL COMPANY.

PROPERTIES OF PASSAIC STEEL PLATE AND ANGLE COLUMNS.

					Axis XX.			Axis YY.		
6		$\frac{1}{4}$	6.74	22.9	36.3	12.09	2.32	10.4	3.321	
"	a	${ }^{\frac{5}{16}}$	8.52	29.0	44.6	14.87	2.29	13.6	4.24	1.26
"	\times	7	11.71	39.8	59.0	19.68	2.25	21.1	6.421	1.34
"	∞	$\frac{1}{2}$	13.00	44.2	64.6	21.53	2.23	24.7	7.601	1.38
7	2	4	7.51	25.	58.3	16.65	2.78	16.1	4.	(1)
"	\sim	$\frac{5}{16}$	9.43	32.1	71.9	20.55	2.76	20.8	5.591	1.49
"	-	16	12.98	44.1	95.8	27.38	2.72	30.8	8.151	1.54
"	-	$\frac{1}{2}$	14.50	49.3	105.1	30.02	2.69	36.3	9.691	58
8		${ }^{5}$	$\overline{10.86}$	36.9	107.5	26.88	3.14	30	7.301	1.67
/		$\frac{3}{8}$	13.12	44.6	128.5	32.13	3.13	37.4	8.791	1.69
"	6	${ }^{7}{ }^{7}$	14.98	50.9	144.6	36.15	3.11	44.4	10.54	1.72
"	\times	$\frac{1}{2}$	17.24	58.6	163.5	40.88	3.08	53.1	12.29	1.75
"	*		19.50	66.3	182.9	45.73	3.06	61.	14.041	1.78
"		${ }^{\frac{5}{8}}$	20.92	71.1	193.5	48.38	3.04	69.1	16.04	1.82
9		${ }^{\frac{5}{6}}$	11.81	40.1	154.2	34.26	3.62	42	9.15	90
"	\cdots	${ }^{16} \frac{3}{8}$	14.22	48.3	183.5	40.78	3.59	52.9	11.131	1.93
"	\times	7	16.30	55.5	207.5	46.12	3.57	63.1	13.37	1.97
"	\times	- $\frac{1}{2}$	18.74	63.7	235.9	52.44	3.55	75.3	15.64	2.01
"	\checkmark	$\frac{9}{16}$	21.18	72.0	263.0	58.44	3.52	87.9	17.90	2.04
"		${ }^{5}$	22.83	77.6	279.1	62.24	3.50	99.0	20.57	2.08
10		$\frac{5}{16}$	12.73	43.	211.8	42.36	4.08	57	11.16	13
"		${ }^{16}$ 㐌	15.35	52.2	252.7	50.54	4.06	71.	3.6	. 17
"	$\stackrel{3}{\times}$	$\frac{7}{16}$	17.62	59.9	286.4	57.28	4.03	85.	16.46	2.21
"	2		20.24	68.8	326.0	65.20	4.01	102.	19.22	2.25
"	20		22.35	76.0	355.7	71.14	4.00	118.1	22.36	2.29
"		$\frac{5}{8}$	24.97	84.9	392.3	78.46	3.97	136	55	2.34
12		$\frac{3}{8}$	18.94	64.	443.	73.37	4.85	119	19.34	2.51
"		6	22.17	75.	513.6	85.60	4.81	144.5	23.03	2.55
"	\pm	$\frac{1}{2}$	25.44	86.5	584.5	97.42	4.80	171.8	26.96	2.60
n	\times	$\frac{9}{16}$	28.67	97.5	651.0	108.5	4.77	199.7	30.912	2.64
"	\bullet		30.94	104	693.	115.6	4.75	223.4	35.39	2.69
"			34.17	116	760.	126.8	4.72	255.7	39.88	2.73
"		$\frac{3}{4}$	37.44	127.	825.	137.6	4.70	288.7	4	2.78

THE PASSAIC ROLLING MILL COMPANY. 159

PROPERTIES OF PASSAIC STEEL PLATE AND ANGLE COJ」UMNS.

				Axis XX.			Axis YY.		
					.				
	$\frac{1}{2}$	41.44	140	1129	0	5.22	366.1		
	$\frac{9}{16}$	43.0	146	1199	182.6	5.27	389.0	59.	. 00
		44.69	152.	1269	192.0	5.33	411.8	63.	. 04
	${ }^{8} \frac{1}{16}$	46.32	157.	1340	200.3	5.38	434.7	66.	. 07
	,	47.94	163.	1415	209.8	5.44	457.6	70.	3.10
	${ }^{4} \frac{13}{16}$	49.57	168.5	1492	219.3	5.49	480.5	73.	3.12
		51.19	174.0	1563	227.2	5.52	503.4	77.	14
	$\frac{15}{16}$	52.82	179.	1642	237.0	5.59	526		
	1	54.44	185	178	246.0				
	$1{ }_{1}^{16}$	56.07	$\overline{190.6}$	180	256.1	5.68	572.0	88.	3.20
	$1{ }^{\frac{1}{8}}$	57.69	196.2	1884	264.9	5.72	594.9	91.	3.22
	$1{ }^{3}$	59.32	201.7	1965	274.3	5.75	617.8	95.04	3.23
	$1 \frac{1}{4}$	60.94	207.2	2050	283.2	5.80	640.6	98.56	3.25
	1	62.57	212.8	2143	292.7	5.85	663.5	102.1	3.26
	$1{ }^{\frac{3}{8}}$	64.19	218.	2224	311	5.88	686.	105.6	3.27
	$1_{1}^{1 \frac{1}{2}}$	65.82 67.44	223.8 229. 183.2	2311	311. 321.	5.98	709.3	112.6	3.29 3.30
	$\frac{1}{2}$	53.9	,		264	6.05	569		3.25
	$\frac{9}{16}$	55.82	189	2088	276.2	6.12	604.	80	3.30
	$\frac{5}{8}$	57.69	196		288.3	6.17	639.8	85.	3.33
	8	59.57	202.	230	299.8	6.22	674.9	89.	3.37
	$\frac{3}{4}$	61.44	208.	2417	312.8	6.28	710.1	94.	3.40
	$\frac{13}{16}$	63.32	215	2533	325.	6.32	745.2	99.	
	${ }^{7}$	65.19	221.	2645	336.2	6.36	815	108.	3.46 3.49
	${ }^{\frac{18}{16}} 1$	68.9	23	28	36	6.48	850	113.4	3.52
	1	70.82	240	300	373 . 2	6.51	885	118.1	3.54
	1	72.69	247	13131	386.1	6.57	921	122.8	3.56
	$1{ }_{1} \frac{3}{6}$	74.57	253	325	398.4	6.61	956.	127.5	3.58
	$1{ }^{1}$	76.4	4259.9	93383	409.7	76.66	991	132.2	
	$1{ }_{1}$	78.32	266	351	421.6	(6.70	1026.	136.9	$\begin{aligned} & 3.62 \\ & 3.64 \end{aligned}$
	$1{ }^{1}$	80.19 82.0	$\begin{aligned} & 272 \\ & 279 \end{aligned}$	3635	437.3	6.74 6.79	1096.	146.	3.64 3.66
	${ }_{1}^{1} 1$	83.9	285	3903	3459.9	6.83	1132	150.9	

PROPERTIES OF PASSAIC STEEL CHANNEL COLUMNS.

		¢	¢ิ์	Axis XX .			Axis YY.		
	8	$\frac{1}{4}$	8.70	64.0	19.9	2.72	46.7	11.7	2.31
	10	4	9.88	68.1	21.0	2.62	50.3	12.6	2.27
	"	$\frac{5}{16}^{\frac{1}{4}}$	10.88	78.2	23.6	2.68	56.0	14.0	2.27
	"		$\underline{11.88}$	90.1	$\underline{26.6}$	2.75	61.0	$\underline{15.3}$	2.27
	12	$\frac{3}{8}$	12.96	98.9	29.2	2.75	71.8	18.0	2.35
	"	$\frac{7}{16}$	13.96	110.	32.0	2.81	77.2	19.3	2.35
		$\frac{1}{2}^{\frac{7}{16}}$	14.96	122.	34.9	2.86	82.5	20.6	2.35
	15	$\frac{1}{2}$	16.72	127.	36.4	2.76	86.9	21.7	2.28
	"	16	17.72	138.	39.3	2.81	92.2	23.1	2.28
	"	16	18.72	152.	42.1	2.86	97.6	24.4	2.28
	17	$\frac{5}{8}$	19.70	161.	44.4	2.86	111.	27.8	2.38
	/	$\frac{11}{16}$	20.70	174.	47.2	2.90	116.	29.1	2.37
	/		21.70	188.	50.2	2.94	122.	30.4	2.37
	/	$\frac{13}{16}$	22.70	203.	53.1	2.98	127.	31.8	2.37
	"		23.70	217.	56.0	3.02	132.	33.1	2.36
	"	$\frac{15}{16}$	24.70	233.	59.0	3.06	138.	34.4	2.36
	"	$1{ }^{16}$	25.70	248.	62.1	3.10	143.	35.8	2.36
	9	4	9.72	97.1	25.9	3.16	71.4	15.8	2.71
	"	$\frac{5}{16}$	10.85	113.	29.7	3.23	79.0	17.6	2.70
	13	$\frac{5}{16}$	13.23	129.	34.1	3.13	100.	22.3	2.75
	"	$\frac{3}{8}$	14.35	146.	37.8	3.20	108.	24.0	2.74
	"	$\frac{7}{16}$	15.48	163.	41.6	3.26	115.	25.7	2.73
	"	$\frac{1}{2}^{1}$	16.60	181.	45.4	3.33	123.	$\underline{27.4}$	2.72
	17	$\frac{1}{2}$	18.95	191.	47.8	3.17	133.	29.6	2.66
	"	$\frac{9}{16}$	20.08	209.	51.5	3.23	141.	31.4	2.66
	"	$\frac{5}{8}$	21.20	228.	55.3	3.28	149.	33.1	2.65
	"	$\frac{11}{16}$	22.33	247.	59.1	3.33	156.	34.7	2.65
	"	- $\frac{3}{4}$	23.45	267.	63.0	3.38	163.	36.4	2.64
	"	$\frac{13}{16}$	24.58	288.	66.8	3.43	171.	38.1	2.64
	"	$\frac{7}{8}$	25.70	309.	70.7	3.47	179.	39.8	2.64
	"	$\frac{15}{16}$	26.83	331.	74.7	3.51	187.	41.5	2.64
	/1	16	27.95	354.	78.6	3.56	194.	43.1	2.64

THE PASSAIC ROLLING MILL COMPANY. 161

PROPERTIES OF PASSAIC STEEL CHANNEL COLUMNS.

				Axis XX .			Axis YY.		
	10	$\frac{1}{4}$	11.0	141	33.3	3.58	107	21.5	3.12
	/1	$\frac{5}{16}$	12.3	164	38.1	3.66	118	23.6	3.09
	13		13.9	179	41.6	3.59	136	27.3	3.14
	/		15.1	203	46.3	3.66	147	29.3	3.12
	"		16.4	227	51.2	3.73	157	31.4	3.10
	/		17.6	252	56.1	3.79	167	33.5	3.08
	17	$\frac{1}{2}$	20.0	265	58.7	3.64	184	36.8	3.04
	//	5 $1 \frac{9}{6}$	21.2	290	63.8	3.70	194	39.0	3.03
	/		22.5	317	68.2	3.76	205	40.9	3.02
	"	$\frac{1}{16}$	23.7	344	73.3	3.81	215	43.0	3.02
	//		25.0	372	78.2	3.86	225	45.2	3.02
	/		26.2	400	83.1	3.91	236	47.2	3.00
	/1		27.5	430	88.3	3.96	246	49.3	2.99
	"	10	28.7	459	93.1	4.00	257	51.4	2.99
	/1	1	30.0	490	98.2	4.04	267	53.4	2.99
	13		14.5	240	49.8	4.07	167	30.4	3.40
		$\frac{3}{8}$	15.9	272	55.7	4.14	181	32.9	3.38
	16		17.7	295	60.5	4.09	208	37.8	3.43
	/1	$\frac{7}{16}$	19.0	329	66.7	4.16	226	40.3	3.41
	"		20.4	364	72.8	4.23	236	42.9	3.41
	21	$\frac{1}{2}$	23.4	383	76.6	4.05	259	47.0	3.33
	/"	$\frac{9}{16}$	24.8	417	82.5	4.11	273	49.5	3.32
	//	$\frac{5}{8}$	26.1	453	88.3	4.16	287	52.1	3.31
	"	- $1 \frac{1}{16}$	27.5	489	94.0	4.21	300	54.6	3.30
	/"	$\frac{3}{4}$	28.9	528	100	4.27	314	57.0	3.30
	/	16	30.3	566	106	4.33	328	59.6	3.29
	/	$\frac{7}{8}$	31.6	604	113	4.38	342	62.2	3.29
	//	$\frac{1}{15}$	33.0	648	119	4.43	356	64.8	3.28
	"	1	34.4	686	125	4.47	370	67.3	3.28
	"	$1 \frac{1}{16}$	35.8	726	131	4.50	383	69.6	3.27
	$1 /$		37.1	771	137	4.55	397	72.2	3.27
	"	$1 \frac{3}{16}$	38.5	816	144	4.60	411	74.8	3.27
	/	$1 \frac{1}{4}$	39.9	859	149	4.64	425	77.3	3.27

	PROPERTIES OF PASSAIC STEEL CHANNEL COLUMNS.								
				Axis XX.			Axis YY.		
					$\begin{aligned} & \text { Section } \\ & \text { Modu- } \\ & \text { lus. } \end{aligned}$	Rad. of Gyr., inches.	$\begin{gathered} \text { Moment } \\ \text { of } \\ \text { Inertia. } \end{gathered}$	$\begin{aligned} & \text { Section } \\ & \text { Modu- } \\ & \text { lus. } \end{aligned}$	Rad. of Gyr., inches
	15		16.3		63.2	9	7	37.9	69
			18.2	377	70.2	4.55	245	40.9	3.67
	20	$\frac{3}{8}$	20.8	412	77.0	4.46	286	47.7	3.71
	"		22.3	457	84.0	4.53	304	50.7	3.69
	"	$\frac{1}{2}$	23.8	502	91.5	4.60	322	53.7	3.68
	25	$\frac{1}{2}$	26.7	526	95.8	4.45	348	58.0	3.61
	/	${ }^{-9} 16$	28.2	572	103	4.51	366	61.1	3.61
	"		29.7	619	110	4.56	384	64.0	3.60
	30 $\prime \prime$ $\prime \prime$ $\prime \prime$ $" \prime$ $\prime \prime$	${ }^{\frac{5}{8}}$	32.6	643	114	4.44	408	68.0	3.54
		$\frac{11}{16}$	34.1	691	122	4.50	426	71.0	3.53
		$1{ }^{\frac{3}{4}}$	35.6	740	129	4.56	444	74.0	3.53
		$\frac{13}{16}$	37.1	790	136	4.62	462	77.0	3.53
		${ }^{\frac{7}{8}}$	38.6	841	144	4.68	480	80.0	3.53
		$\frac{15}{16}$	40.1	893	150	4.73	498	83.0	3.52
		1	41.6	949	158	4.78	516	86.0	3.52
		$1 \frac{1}{8}$	44.6	1059	172	4.87	552	92.0	3.52
		$1 \frac{1}{4}$	47.6	1173	188	4.97	588	98.0	3.51
		$1 \frac{3}{8}$	50.6	1292	203	5.05	624	104	3.51
		$1 \frac{1}{2}$	53.6	1416	217	5.14	660	110	3.51
	20	$\frac{3}{8}$	22.3	650	102	5.40	429	61.3	4.39
	N	16	24.1	724	112	5.48	457	65.3	4.36
	25	1	27.1	760	118	5.30	505	72.1	4.31
	"	$\frac{1}{2}$	28.8	833	128	5.38	534	76.3	4.31
	30	$\frac{1}{2}$	31.6	891	137	5.32	600	85.7	4.36
	"	${ }_{1} 96$	33.4	964	147	5.37	628	89.7	4.34
	"		35.1	1043	157	5.45	657	93.9	4.33
	"	$\frac{11}{16}$	36.9	1118	168	5.51	686	98.0	4.31
	"	$\frac{3}{4}$	38.6	1198	178	5.57	714	102	4.30
	35	4	41.6	1234	183	5.44	753	108	4.25
	"	$\frac{13}{16}$	43.4	1316	193	5.50	782	112	4.25
	"	${ }^{7} 8$	45.1	1396	204	5.56	810	116	4.24
	/	$\frac{15}{16}$	46.9	1482	214	5.63	840	120	4.24
	"	1	48.6	1565	224	5.68	867	124	4.22
	"	$1 \frac{1}{8}$	52.1	1742	245	5.79	925	132	4.21
	"	$1 \frac{1}{4}$	55.6	1922	266	5.90	981	140	4.21
		$1 \frac{3}{8}$	59.1	2105	287	5.98	1039	148	4.19
	"	$1 \frac{1}{2}$	62.6	2302	308	6.08	1096	157	4.19

PROPERTIES OF PASSAIC STEEL CHANNEL COLUMNS,

 HEAVY SECTION.

				Axis XX.			Axis YY.		
		16	49.		145	4.1	2	87	3.26
		172	50.6	881	152	4.18		0	3.27
		177	52.1	932	159	4.23	58	93	3.27
		182.3	53.6	985	166	4.30	576	96	3.28
	11	187.	55.1	1039	173	4.35	594	99	
	$1 \frac{1}{8}$	197	58.1	1149	188	4.45	630	105	3.
	$1{ }^{1}$	207	61.1	1264	203	4.55	666	111	3.30
	1	218	64.1	1384	218	4.65	702	117	3.31
	1	228	67.1	1507	233	4.75	738	123	3.31
	$1{ }^{5}$	238	70.1	1637	247	4.84	774	129	32
	$1{ }^{13}$	248	73.1	1766	263	4.92	810	135	3.33
	17		76.1	1910	279	5.00	846	141	3.33
	2		79.1	2057	293	5.10	882	147	3.34
	$2{ }^{1}$		82.1	2208	311 326	5.19 5.27	918	153	
		203	59.9	1478	217	4.97	956		
		209	61.6	1563	228	5.05	98	141	4.00
		215	63.4	1646	237	5.10	1013	145	4.0
	1	221.3	65	1729	247	5.15	1041	149	4.00
	$1 \frac{1}{1}$	233.3	68.6	1907	268	5.	1099	157	4.00
	1	245.1	72.1	2090	288	5.38	1156	165	4.01
	13	257.0	75.6	2272	309	5.49	1213	173	4.01
	$1 \frac{1}{2}$	269	79.1	2466	329	5.59	1271	181	4.01
	1	280.8	82.6	2665	349	5.69	1328	189	4.02
	$1{ }_{1}^{13}$	292.7	86.1	2876	371	5.78	1385	198	4.02
							1442	206	4.02
	$2 \frac{1}{3}$	328.4	96.6	3538	435	6.05	1557	222	4.02
	$2 \frac{1}{4}$	340.4	100.1	3773	458	6.15	1614	231	4.02

PROPERTIES OF PASSAIC STEEL CHANNEL COLUMNS.

Light Section.

Heavy Section.

$\begin{aligned} & \stackrel{.}{0} \\ & \stackrel{0}{\pi} \\ & \stackrel{\rightharpoonup}{\pi} \\ & \stackrel{.0}{\omega 0} \\ & \stackrel{0}{0} \end{aligned}$				Axis XX.			Axis YY.		
	33	$\frac{1}{2}$	4	1630	20		1084	8	
	"		38.5	1767	219	6.77	1136	134	5.43
	35		39	178	22	6.	116	137	5.42
	"	${ }^{16} \frac{5}{8}$	41.9	1928	237	6.79	1217	143	5.39
	40	$\frac{5}{8}$	44.9	1983	244	6.65	1288	152	5.36
	/	$\frac{11}{16}$	47.0	2124	259	6.72	1339	158	5.34
	45	$\frac{11}{16}$	49.8	2180	$\overline{266}$	6.62	1405	165	5.31
	/1	- ${ }^{3}$	51.9	2324	282	6.69	1456	171	5.30
	50	$\frac{3}{4}$	54.9	2379	288	6.58	1525	179	5.27
	/	16	57.0	2527	304	6.66	1576	185	5.26
	"		59.2	2673	319	6.72	1627	191	5.24
	"	6	61.3	2822	335	6.79	1678	197	5.23
	"		63.4	2975	350	6.85	1730	203	5.22
	"	$1 \frac{1}{8}$	67.7	3288	381	6.97	1832	216	5.21
	"	1	71.9	3608	412	7.08	1934	228	5.19
	"	1	76.2	3938	444	7.19	2037	240	5.17
	"	11	80.4	4278	475	7.30	2139	252	5.16
	50	$\frac{3}{4}$	75.9	2722	330	5.99	1420	226	5.03
	/	$\frac{13}{1} \frac{1}{6}$	78.0	2870	345	6.06	1971	232	5.03
	"		80.2	3016	360	6.14	2022	238	5.02
	"	$\frac{15}{15}$	82.3	3165	375	6.20	2074	244	5.02
	"		84.4	3318	390	6.27	2125	250	5.02
	/'	$1 \frac{1}{8}$	88.7	3631	420	6.40	2227	262	5.01
	"		92.9	3951	452	6.52	2330	274	5.01
	"	$1{ }^{8}$	97.2	4281	482	6.64	2432	286	5.00
	"	$1{ }^{\frac{1}{2}}$	101.4	4621	513	6.75	2534	298	5.00
	"	$1 \frac{5}{8}$	105.7	4970	545	6.86	2637	310	5.00
	"	$1 \frac{3}{4}$	109.9	5328	576	6.96	2739	322	4.99
	"	17	114.2	5696	608	7.06	2841	334	4.99
	"	2	118.4	6075	640	7.16	2944	346	4.99
	"	22	122.7	6463	672	7.26	3046	358	4.98
	"	$2 \frac{1}{4}$	126.9	6864	704	7.36	3148	370	4.98

THE PASSAIC ROLLING MILL COMPANY. 165

PROPERTIES OF PASSAIC STEEL Z BAR COLUMNS.

				Axis XX.			Axis YY.		
								$\begin{aligned} & \text { Ei } \\ & . \frac{1}{3} \\ & y_{0}^{3} \\ & \text { U. } \end{aligned}$	
			21.4	287	46.5	3.67	337	46.5	3.97
E			25.1	347	55.2	3.72	391	54.0	3.95
E			28.8	409	64.1	3.78	445	61.3	3.92
			31.2	427	67.9	3.69	469	66.4	3.88
			34.8	489	76.8	3.74	518	73.4	3.86
-			38.5	556	85.9	3.79	567	80.0	3.83
N			40.5	562	88.2	3.72	579	84.2	3.78
ミ			44.1	629	97.3	3.77	624	90.7	3.76
$\stackrel{\square}{\square}$			47.7	700	106.6	3.82	664	96.5	3.73
EE0-BNN-		$\begin{array}{cc} \\ \frac{3}{8} & \frac{5}{16} \\ \frac{7}{16} \\ \frac{1}{2} \\ & \\ \frac{5}{16} & \\ { }^{16} \\ & \frac{11}{16} \\ \frac{3}{4} & \\ & \frac{33}{16} \\ \hline \end{array}$	15.8	149	29.0	3.08	197	30.1	3.54
			19.0	186	35.5	3.13	235	35.8	3.52
			22.3	225	42.0	3.17	272	42.1	3.50
			24.5	236	44.9	3.10	290	45.5	3.44
			27.7	275	51.5	3.16	324	50.8	3.42
			30.9	318	58.4	3.21	358	56.1	3.40
			32.7	320	59.9	3.13	365	59.0	3.34
			35.8	363	66.8	3.18	393	63.5	3.32
			39.0	411	74.3	3.25	428	69.2	3.30
		$\frac{1}{4}$	11.3	68.7	16.6	2.47	123	20.0	3.31
			14.2	89.8	21.3	2.52	159	24.6	3.28
		$\frac{3}{8}$	17.1	113	26.1	2.57	184	29.8	3.28
			19.0	118	28.1	2.49	198	33.1	3.23
			21.9	142	32.9	2.54	225	37.6	3.21
			24.7	167	37.8	2.59	252	41.9	3.19
			26.3	167	38.8	2.52	258	44.3	3.13
		6	29.0	193	43.8	2.58	281	48.4	3.11
		$\frac{3}{4}$	31.9	221	49.0	2.63	305	52.4	3.09
		1	9.38	32.3	10.3	1.86	86.7	15.6	3.04
		$\frac{5}{16}$	11.8	42.8	13.3	1.91	108	19.3	3.02
			13.7	48.0	15.1	1.87	121	22.3	2.97
			16.1	59.5	18.1	1.92	140	25.8	2.95
			17.8	63.6	19.6	1.89	150	28.3	2.91
		- 16	20.1	76.0	22.7	1.94	168	31.7	2.89

166 THE PASSAIC ROLLING MILL COMPANY.

PROPERTIES OF PASSAIC STEEL \boldsymbol{z} BAR COLUMNS.

				Axis $\mathbf{X X}$.			Axis YY.		
				$\begin{gathered} \text { Mom. } \\ \text { Mof } \\ \text { of } \end{gathered}$	$\begin{aligned} & \text { Section } \\ & \text { Modu- } \\ & \text { lus. } \end{aligned}$	$\begin{aligned} & \text { Rad. of } \\ & \text { Gyr., } \\ & \text { inches. } \end{aligned}$	$\begin{gathered} \text { Mornt } \\ \text { Ineftia. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Section } \\ \text { Modu• } \end{gathered}\right.$ lus.	$\begin{aligned} & \text { Rad. of } \\ & \text { Gyr., } \\ & \text { inches. } \end{aligned}$
		-	51.0	1014	150.0	4.46	750.5	107.2	3.84
			52.8	1094	160.7	4.55	779.2	111.3	3.84
			54.5	1180	171.6	4.65	808.0	115.4	3.85
8			56.3	1260	181.6	4.72	836.2	119.5	3.85
号			58.0	1344	192.2	4.82	864.7	123.5	3.86
-		$\frac{11}{16}$	59.8	1431	20.7	4.89	893.7	127.7	3.87
N			61.5	1511	212.0	4.96	922.0	131.7	3.88
シ			63.3	1609	223.9	5.04	951.2	135.9	3.88
		$\frac{7}{8}$	65.0	1701	234.5	5.11	979.5	139.9	3.
		$\frac{11}{16}$	66.9	1618	223.2	4.92	$\overline{979.3}$	139.7	83
			68.7	1711	234.0	4.99	1007	143.8	3.84
		$\frac{13}{16}$	70.5	1805	244.8	5.06	1035	147.9	3.84
			72.2	1901	255.7	5.13	1064	152.0	3.84
			74.0	1999	266.5	5.20	1092	156.2	3.84
			75.7	2098	277.5	5.26	1121	160.2	3.85
			77.5	2198	288.3	5.32	1150	164.2	3.8
			79.2 81.0	2405	299.1 310.4	5.39 5.45	1178	168.2 172.5	3.86
		14	82	2510	321.3	5.51	1236	176.5	3.86
		1	81.4	2298	303.8	5.31	1726	216.2	4.60
		1	83.4	2413	316.5	5.38	1769	221.6	4.60
		18	85.4	2531	329.5	5.44	1811	226.8	4.60
		$1{ }_{1}{ }^{\frac{3}{6}}$	87.4	2650	341.9	5.50	1854	232.2	4.60
		$1{ }^{1}$	89.4	2771	354.4	5.56	1897	237.6	4.60
		$1 \frac{5}{16}$	91.4	2895	367.6	5.62	1939	242.9	4.60
		$1 \frac{1}{8}$	93.4	3019	380.4	5.69	1982	248.2	4.60
		$1 \frac{7}{16}$	95.4	3146	393.3	5.74	2025	253.6	4.60
		$1 \frac{1}{2}$	97.4	3275	406.3	5.80	2067	258.9	4.60
		${ }_{11_{1}{ }^{9} 6}$	99.4	3406	419.2	5.86	2110	264.1	4.60
		1	101.4	3539	4	5.91	2153	269.4 274.8	4.61
		$1{ }^{3}$	105.4	3811	458.5	6.01	2238	280.1	4.61
		$1 \frac{13}{16}$	107.4	3951	471.8	6.06	2280	285.4	4.61
		17	109.4	4092	485.0	6.12	2323	290.8	4.61
		$1 \frac{15}{16}$	111.4	4235	498.3	6.17	2366	296.2	4.61
			113.4	4381	511.7	6.21	2409	301.4	4.61
			115.4	4528	524.9	6.26	2451	306.8	4.61
		$2 \frac{1}{8}$	117.4	4679	538.6	6.31	2494	312.2	4.61
		${ }_{21}{ }^{\frac{3}{16}}$	119.4	4831	552.1 565.3	6.36	2537	317.4 322.9	4.61
		$2 \frac{1}{4}$	121	4985	565.	6.41	2579	322	

THE PASSAIC ROLLING MILL COMPANY. 167

THE PASSAIC ROLLING MILL CGMPANY．
EQUAL LIEGS，
SQUARE ENDS．
（Continued．）

Unsupported length of Column，in feet．
199
さ二

Unsuppo

			二上卜 くर～－T－	
	88888	${ }_{20}^{6} 1506$		$\underset{y}{6} \in$

Thickness
\mid
-64010

	mor－	－．a
No		cos－

Size of
Size of
Angle，
-2
\times
-9

Q

170 THE PASSAIC ROLLING MILL COMPANY.

THE PASSAIC ROLLING MILL COMPANY. 171

UNEQUAL LEGS，
SQUARE ENDS．
（Continued．）

$\stackrel{\mathrm{C}}{\mathrm{C}}$		$\left\lvert\, \begin{array}{llll} \infty & -1 & 0 \\ 0 & 0 & \infty \\ \cdots & \infty & 0 \\ \hdashline \end{array}\right.$
$\stackrel{\square}{\square}$		

\qquad

 ANGLES，
 apart．
$\frac{7}{65.5}$

$1 / 2$
6
4

1220 59ー

$\left|\begin{array}{cccc}0 & 09 & 0 & 0 \\ 0 & 1 \\ 0 & 0 & 10 & \ddots \\ 0 & 0 & 0\end{array}\right|$
$\left|\begin{array}{ccccc}0 & 0 & -1 & 0 & 0 \\ \dot{0} & 10 & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right|$

0	0
\therefore	0

\qquad

 back，
 $\left\lvert\, \begin{array}{ccc}0 & 0010 & 62 \\ 20 & -100 & 0\end{array}\right.$

\pm	

－co に かも

σ		－¢

LOADS HOR
AS STRUTS OR
Two Angles，long le

$Q |$| 号 |
| :--- |
| $: \rho$ |

0

0
0
0
0
ON
0 OR
$+1$
129 $1-0$
$\therefore 0 \div$
EQUAL LEGS,
SQUARE ENDS.

[^3]| Unsupported length of Column, in feet. | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 3 | 4 | 5 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 |
| | | | 119 | 116 | 109 | 103 | 96.6 | 90.2 | 83.8 | 77.4 | 71.0 | 64.6 | 58.2 |
| | | | 51.9 | 50.5 | 47.7 | 45.0 | 42.2 | 39.4 | 36.6 | 33.8 | 31.0 | 28.2 | 25.4 |
| | | 85.0 | 82.2 | 79.5 | 74.0 | 68.5 | 63.0 | 57.4 | 51.9 | 46.4 | 40.9 | | |
| | | 43.2 | 41.9 | 40.5 | 37.7 | 34.9 | 32.1 | 29.3 | 26.6 | 23.8 | 21.0 | | |
| | 73.3 | 70.7 | 67.8 | 64.9 | 59.0 | 53.0 | 47.1 | 41.1 | 35.2 | | | | |
| | 28.8 | 27.7 | 26.6 | 25.4 | 23.1 | 20.8 | 18.4 | 16.1 | 13.8 | | | | |
| | 46.9 | 44.4 | 42.2 | 39.9 | 35.3 | 30.8 | 26.2 | | | | | | |

Q
シ
号
$\dot{\theta}$

Unsupported length of Column, in feet.													
2	3	4	5	6	8	10	12	14	16	18	20	22	24
			119	116	109	103	96.6	90.2	83.8	77.4	71.0	64.6	58.2
			51.9	50.5	47.7	45.0	42.2	39.4	36.6	33.8	31.0	28.2	25.4
		85.0	82.2	79.5	74.0	68.5	63.0	57.4	51.9	46.4	40.9		
		43.2	41.9	40.5	37.7	34.9	32.1	29.3	26.6	23.8	21.0		
	73.3	70.7	67.8	64.9	59.0	53.0	47.1	41.1	35.2				
	28.8	27.7	26.6	25.4	23.1	20.8	18.4	16.1	13.8				
	46.9	44.4	42.2	39.9	35.3	30.8	26.2						

0	0
0.8	0
8	

웅

Unsupported length of Column, in feet.													
2	3	4	5	6	8	10	12	14	16	18	20	22	24
			119	116	109	103	96.6	90.2	83.8	77.4	71.0	64.6	58.2
			51.9	50.5	47.7	45.0	42.2	39.4	36.6	33.8	31.0	28.2	25.4
		85.0	82.2	79.5	74.0	68.5	63.0	57.4	51.9	46.4	40.9		
		43.2	41.9	40.5	37.7	34.9	32.1	29.3	26.6	23.8	21.0		
	73.3	70.7	67.8	64.9	59.0	53.0	47.1	41.1	35.2				
	28.8	27.7	26.6	25.4	23.1	20.8	18.4	16.1	13.8				
	46.9	44.4	42.2	39.9	35.3	30.8	26.2						

$|$| 0∞ | |
| :--- | :--- |
| 0 | 0 |

 $\dot{0} \underset{-10}{0}=$
 Ω
eq of
NI $^{6} \mathrm{~S}$
DIV

Unsupported length of Column, in feet.													
2	3	4	5	6	8	10	12	14	16	18	20	22	24
			119	116	109	103	96.6	90.2	83.8	77.4	71.0	64.6	58.2
			51.9	50.5	47.7	45.0	42.2	39.4	36.6	33.8	31.0	28.2	25.4
		85.0	82.2	79.5	74.0	68.5	63.0	57.4	51.9	46.4	40.9		
		43.2	41.9	40.5	37.7	34.9	32.1	29.3	26.6	23.8	21.0		
	73.3	70.7	67.8	64.9	59.0	53.0	47.1	41.1	35.2				
	28.8	27.7	26.6	25.4	23.1	20.8	18.4	16.1	13.8				
	46.9	44.4	42.2	39.9	35.3	30.8	26.2						

\square

$+\infty$

174 THE PASSAIC ROLLING MILL COMPANY.

THE PASSAIC ROLLING MILL COMPANY. 175

176 THE PASSAIC ROLIING MIIL COMPANY.

$] \cdot d \cdot[$																			
		d,	D,																
					它	ctictict	S. 14 fil	16 ft	${ }^{13} \mathrm{ft}$	20 tr .	${ }^{23 \mathrm{f}}$ f.	24 n .	26 ft	28 ft	30f.	fr.			
8	$\begin{array}{\|l\|} \hline 10 \\ 11 \\ 12 \\ 13 \\ 15 \\ 17 \\ \hline 17 \\ \hline \end{array}$	$\begin{aligned} & 5.0 .0 \\ & 4.9 \\ & 4.8 \\ & 4.9 \\ & 4.7 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 7.1 \\ & 6.9 \\ & 6.8 \\ & 7.8 \\ & 7.0 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 6.00 \\ & 6.59 \\ & 7,50 \\ & 7.60 \\ & 8.787 \\ & 9.97 \end{aligned}$		$\begin{aligned} & 36 \\ & 40 \\ & 43 \\ & 46 \\ & 54 \\ & 60 \\ & \hline 60 \end{aligned}$	$\begin{aligned} & \hline 36 \\ & 39 \\ & 42 \\ & 45 \\ & 59 \\ & 58 \\ & 58 \end{aligned}$	$\begin{aligned} & 35 \\ & \hline 87 \\ & 40 \\ & 40 \\ & 40 \\ & 50 \\ & 55 \\ & \hline 15 \end{aligned}$	$\begin{aligned} & \hline 33 \\ & 36 \\ & 39 \\ & 42 \\ & 48 \\ & \hline 53 \\ & \hline 1 \end{aligned}$	$\begin{array}{\|l} 32 \\ 34 \\ 37 \\ 40 \\ 46 \\ 51 \\ 51 \end{array}$	$\begin{array}{\|l} 31 \\ 33 \\ 35 \\ 38 \\ 44 \\ 48 \\ 48 \end{array}$	$\begin{aligned} & 29 \\ & 31 \\ & 34 \\ & 37 \\ & 42 \\ & 42 \\ & 4 \end{aligned}$	$\begin{array}{\|l\|} \hline 28 \\ 30 \\ 30 \\ 35 \\ 35 \\ 39 \\ 49 \end{array}$	$\begin{array}{\|l} 26 \\ 28 \\ 38 \\ 34 \\ 34 \\ 37 \\ 41 \\ \hline \end{array}$	$\begin{aligned} & 25 \\ & 27 \\ & 27 \\ & 29 \\ & 32 \\ & 35 \\ & 39 \\ & \hline 9 \end{aligned}$				
	$\begin{array}{r} 13 \\ 13 \\ 14 \\ 15 \\ 16 \\ 18 \\ 21 \\ \hline \end{array}$	$\begin{aligned} & 5.7 \\ & 5.7 \\ & 5.6 \\ & 5.5 \\ & 5.5 \\ & 5.3 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 7.8 \\ & 7.7 \\ & 8.1 \\ & 8.0 \\ & 8.7 \end{aligned}$	$\begin{aligned} & 7.60 \\ & 8.19 \\ & 8.79 \\ & 9.40 \\ & 10.40 \\ & 12.4 \\ & \hline 1 \end{aligned}$		46 49 49 56 54 74 7	$\begin{aligned} & 46 \\ & \hline 49 \\ & 59 \\ & 59 \\ & 56 \\ & 74 \\ & \hline 7 \\ & \hline \end{aligned}$	$\begin{aligned} & 45 \\ & \hline 48 \\ & \hline 81 \\ & 51 \\ & 56 \\ & 68 \\ & 72 \end{aligned}$	44 45 49 54 60 69	$\begin{array}{\|l\|} \hline 42 \\ 43 \\ 43 \\ 47 \\ 52 \\ 58 \\ 67 \\ \hline \end{array}$	$\begin{aligned} & \hline 41 \\ & 42 \\ & 45 \\ & 50 \\ & 56 \\ & 56 \\ & 64 \end{aligned}$	$\begin{array}{\|l\|} \hline 39 \\ 49 \\ 41 \\ 43 \\ 54 \\ 64 \\ \hline 62 \\ \hline \end{array}$	$\begin{aligned} & 38 \\ & 38 \\ & 39 \\ & 42 \\ & 47 \\ & 59 \\ & \hline 59 \\ & \hline \end{aligned}$	$\begin{aligned} & 36 \\ & \hline 36 \\ & 37 \\ & 41 \\ & 45 \\ & 50 \\ & 57 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 35 \\ \hline 36 \\ 36 \\ 49 \\ 43 \\ 54 \\ 54 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 33 \\ \hline 35 \\ 37 \\ 41 \\ 45 \\ 51 \\ \hline \end{array}$	 30 31 34 38 41 46 46		
	$\begin{array}{\|l\|} \hline 15 \\ 17 \\ 18 \\ 20 \\ 25 \\ \hline 30 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6.3 \\ 6.1 \\ 6.0 \\ 6.0 \\ 5.7 \\ 5.4 \\ 5.4 \end{array}$	$\begin{aligned} & 8.9 \\ & 8.7 \\ & 8.6 \\ & 8.9 \\ & 8.6 \\ & 8.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.80 \\ & 10.1 \\ & 10.7 \\ & 11.8 \\ & 14.7 \\ & 17.6 \end{aligned}$		$\begin{aligned} & 53 \\ & 60 \\ & 64 \\ & 71 \\ & 88 \\ & 106 \end{aligned}$	$\begin{gathered} 53 \\ 60 \\ 64 \\ 71 \\ 88 \\ \hline 106 \\ 106 \end{gathered}$	$\begin{aligned} & 53 \\ & \hline 60 \\ & 64 \\ & 71 \\ & 78 \\ & \hline 105 \\ & 105 \end{aligned}$		$\begin{array}{\|l} 51 \\ 57 \\ 61 \\ 67 \\ 82 \\ 82 \\ 98 \end{array}$	$\begin{aligned} & \hline 49 \\ & 55 \\ & 59 \\ & 65 \\ & 80 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 54 \\ & 57 \\ & 57 \\ & 63 \\ & 70 \\ & 97 \end{aligned}$	46 52 55 61 74 78 8	$\begin{aligned} & 45 \\ & 50 \\ & 50 \\ & 59 \\ & 71 \\ & 84 \\ & 84 \end{aligned}$	$\begin{aligned} & 43 \\ & 48 \\ & 51 \\ & 57 \\ & 59 \\ & 89 \\ & 89 \end{aligned}$		$\begin{aligned} & 38 \\ & \hline 38 \\ & 45 \\ & 50 \\ & \hline 00 \\ & 70 \\ & 70 \end{aligned}$		

ATTICED

of 2000 LbS.,

STEEL
PASSAIC
FOR
$] \cdot a \cdot\left[\begin{array}{c}\text { SAFE LOADS } \\ \text { CHANNEL COLUN }\end{array}\right.$

		Inches.	D. Inches.			$:\left\{\begin{array}{l}12,000 \mathrm{lbs} . \text { for lengths of } 50 \text { radii and und } \\ 15,000-57 \frac{l}{r} \text { for lengths over } 50 \text { radii. }\end{array}\right.$ Allowable strains per square inch : $\left\{\begin{array}{l}\mathbf{1 2 , 0 0 0} \mathrm{lbs} \text {. for lengths of } 50 \text { radii and under. }\end{array}\right.$												
						$\begin{gathered} 18 \mathrm{ft} \\ \text { or less. } \end{gathered}$	20 ft .	22 ft .	24 ft .	26 ft .	28 ft .	30 ft .	32 ft .	36 ft .	40 ft .	44 ft .	48 ft .	52 ft .
12	20	7.7	10.4	11.8	4.59	71	71	69	67	66	64	69	60	57	53	49	46	
//	23	7.4	10.2	13.6	4.47	82	81	79	77	75	73	71	69	64	60	56	52	
//	25	7.3	10.0	14.8	4.39	89	88	86	8.3	81	79	76	74	69	65	60	56	
/	${ }^{2} 7$	7.4	10.5	15. 8	4.54	95	95	93	90	88	85	83	81	76	71	66	61	
/	30	7.1	10.6	17.6	4.42	106	105	102	100	97	94	91	89	83	78	73	67	
"	33	7.0	10.1	19.4	4.34	116	115	112	109	106	103	100	97	91	85	79	76	
/	35	6.9	10.0	20.6	4.29	123	122	119	116	112	109	105	102	95	89	83	76	
15	33	9.5	12.7	19.4	5.64	116	116	116	116	114	111	109	10%	102	98	93	88	84
/	35	9.4	12.5	20.6	5.53	124	124	124	124	121	118	116	113	108	103	98	93	88
"	40	9.1	1:.2	23.6	5.40	142	142	142	141	138	135	132	129	123	117	111	105	99
"	45	8.9	12.0	26.4	5.29	158	158	158	157	153	150	147	143	136	130	1:3	116	109
/"	50	8.7	11.8	29.4	5.21	176	176	176	174	170	166	162	159	151	143	135	128	120

The channels must be latticed together to ensure uniformity of action, and must be separated not less than the distances \mathbf{d} and \mathbf{D} respectively.

			＋				
		¢		$8_{1}^{6} 88$	Fix	-	
		＋	$\text { Fig } 0$		종ㅇㅇ		
		む		+	$\left\lvert\, \begin{array}{lcc} 0 & 0 \\ =1 & 0 & 0 \end{array}\right.$	00才	
		＋			OQ 心e	O	
		$\begin{aligned} & \pm \\ & \text { ì } \\ & \hline \end{aligned}$				$\sigma_{\infty}^{\infty} \rightarrow \infty 0_{10}^{\infty}$	
		$\underset{\sim}{\infty}$		$\underset{\sim}{9} \text { H2 }$	なさなか		
		$\begin{gathered} \text { تٌ } \\ \text { Be } \end{gathered}$	NOCO		0900		
		む से	 	Nㅡㅇㅇㅇ			
		＋			RS OQ	$\overbrace{1}^{\infty}$ ©	
		¢ ¢ c			No dix	す8 ©	
		$\underset{\substack{\text { ¢ } \\ \sim}}{ \pm}$	为 -6		$\left\lvert\, \begin{array}{ccc} 0 & 0 \\ 00 & 0 & 0 \\ =1 & 0 \end{array}\right.$	－お拥 6	
		H		N N	$\cos _{\substack{0}}^{\infty}$	8® が	
		H ＋		जN NG N		$=1088810$	
		¢		$\text { N. } 20.96$	$\text { 于に } 0_{i}^{\infty}$	تion	
		－səyวu！ ＇чopeari jo snipe	121090 272. Nicisick	0000 N	10888 10100010		
		－sui •bs ＇uo！ịas jo eary		$\begin{array}{lll} 20 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \end{array}$			
			8.1010	¢ 910810	01009%	¢ 12015 ¢ 120	
			$8=:=$	$\underset{-1}{\infty} \leqslant=\leqslant=$		$\xrightarrow[Q]{Q} \leqslant=\leqslant \leqslant=$	

(Contimued.)

$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	
-	
$\begin{array}{l\|ll} \therefore & 0, \infty \\ \therefore & 0 & 0 \\ \text { N } \\ \hline \end{array}$	
$\begin{array}{l\|lll} \infty & \infty \\ \infty \\ \infty & \infty \\ \infty & \infty \\ 0 \end{array}$	

Sideways.

| 24 ft | 26 ft. |
| :--- | :--- | :--- | | Beam, in feet. |
| :--- |
| 20 ft. |
| 22 ft. |

24 ft	26 ft	28 ft.	30 ft	$\frac{32 \mathrm{ft}}{}$
57.8	$\frac{56.0}{54.2}$	$\frac{52.3}{50.5}$	$\frac{5}{50.2}$	

180 THE PASSAIC ROLLING MILL COMPANY．

	$\underset{\substack{\underset{\sim}{4} \\ \hline \\ \hline}}{ }$				
	¢				
	$\underset{\sim}{ \pm}$	$\begin{aligned} & 00 \pi \\ & 8 i 96 \\ & 806 \end{aligned}$	ハへのみに 		
	$\underset{\sim}{\Perp}$	$\begin{aligned} & -100 \\ & \therefore \infty \\ & \infty \\ & 0 \end{aligned}$	$\left\lvert\, \begin{array}{cccc} \infty & 0 & 0 & 0 \\ \infty & \infty \\ 0 & \infty & 10 \end{array}\right.$	$\begin{array}{llll} 0 & 0 & 0 \\ 080 & 0 & 0 \\ 00 & 0 & 0 \end{array}$	
	$\underset{\sim}{\underset{\sim}{c}}$	$\sigma_{0}^{\infty} \infty$			
	$\underset{\sharp}{\rightleftarrows}$	$\dot{0} \dot{\theta} \dot{\sim}$		$\begin{array}{cccc} \infty & \infty \\ \dot{c} \dot{8} & \infty \\ \hline & \infty \\ \hline \end{array}$	
	$\underset{\sim}{\circ}$	$\dot{H}_{=1}^{\dot{8}} \dot{8} \dot{8}$	Oix ix		$\left\lvert\, \begin{array}{ll} 100 & 0 \\ 080 \\ 00 & 0 \\ 00 & 0 \end{array}\right.$
	تـ	$\underset{\sim}{x}$		$\left\lvert\, \begin{array}{cc} 0 & N \\ \infty & \alpha \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}\right.$	
	$\underset{\infty}{\dot{-}}$		$\underset{\sim}{\infty} \infty \infty$		
	$\underset{\sim}{\Perp}$				
		我	$\dot{\sim} \dot{\sim}_{=1}^{\infty} \infty$	Nis	
	$\underset{\text { in }}{\substack{4 \\ \hline}}$			$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \dot{\infty} \dot{\infty}$	
	ٌ	Mi M	$\underset{=}{\infty} \dot{\infty} \dot{0} \dot{\theta} \dot{\theta} \dot{0}$		${ }_{10}^{\infty} 0090$
	$\underset{\sim}{\rightleftarrows}$		$\dot{\sim}$	-	-
	$\underbrace{4}_{a}$				
		$\left\|\begin{array}{lll} \therefore 2 & 0 & 0 \\ \sigma & 0 & 0 \end{array}\right\|$			
‘sui ${ }^{\text {bs }}$ ＇uo！ijos јо гวлท					
		8881210	8958	81988	1815×9
		$\gamma=1$	$\underline{0}=$＝	10 ミ＝	$a^{2}=$

182 THE PASSAIC ROLLING MILL COMPANY.

THE PASSAIC ROLLING MILL COMPANY. 183

184 THE PASSAIC ROLLING MILL COMPANY.

186 THE PASSAIC ROLLING MITL COMPANY.

THE PASSAIC ROLLING MILL COMPANY。187

188 THE PASSAIC ROLLING MILL COMPANY.

THE PASSAIC ROLLING MILL COMPANY. 189

192 THE PASSAIC ROLLING MILL COMPANY.

THE PASSAIC ROLLING MILL COMPANY. 193

194 THE PASSAIC ROLLING MILL COMPANY.

THE PASSAIC ROLLING MILL COMPANY． 195

		N	
		¢	
		¢	
		$\begin{aligned} & \stackrel{1}{\circ} \\ & \dot{\circ} \end{aligned}$	
	$\begin{array}{cc} \underset{n}{n} & \hat{2} \\ \frac{1}{8} & 0 \\ 0 & 0 \\ \underset{\sim}{n} & \tilde{n} \end{array}$		
		$\underset{\sim}{\dot{\sim}}$	
		$\underset{\sim}{\infty}$	
		む゙心	
		$\stackrel{\Perp}{む}$	
		ल゙	
		迷它	
	sәуวu！ snipey isert		g9 gig is
	＇sวบุวu！әxenbs ＇นo！ 1 jo eวat		
	＇sวчวu！ jo ssวuษว！ $4 . L$		$\xrightarrow[N o]{\text { No }}$

196 THE PASSAIC ROLLING MILL COMPANY.

z BAR COLUMN DIMENSIONS, in inches.

$6^{\prime \prime}$ Columns ;
4 Z bars, $3^{\prime \prime}-3 \frac{1}{16^{\prime \prime}}$ deep,
1 Web plate $6^{\prime \prime} \times$ thickness of \mathbf{Z} bars.

		A	8	C	D	E	F	C	H	K
\% $=$	$\frac{1}{4}$	123	$3 \frac{1}{8}$	$5 \frac{9}{16}$	$3 \frac{1}{8}$	3	15	$21 \frac{1}{6}$	9	$3{ }^{1}$
¢ m	$\frac{1}{16}$	$12 \frac{13}{16}$	$3{ }^{\frac{7}{2}}$	$5 \frac{16}{16}$	$3 \frac{1}{8}$	3	$1 \frac{5}{8}$	$2{ }^{3}{ }^{\text {b }}$	$8 \frac{7}{8}$	$3 \frac{3}{8}$
$\stackrel{ \pm}{ \pm}$		$12^{\frac{5}{8}}$	$3{ }^{3} 16$	$5 \frac{7}{16}$	$3{ }^{1}$	3	18	$2 \frac{11}{16}$	$8{ }^{\frac{3}{4}}$	$3{ }^{3}$
$\stackrel{\text { U }}{\text { U }}$	$\frac{7}{16}$	$12 \frac{11}{16}$	$3{ }_{32}$	$5{ }_{16}^{7}$	$3 \frac{1}{8}$	3	$1{ }^{\frac{5}{8}}$	$2{ }^{3}$	$8 \frac{5}{3}$	$3 \frac{1}{2}$
$\stackrel{\text { ¢ }}{\text { - }}$		$12 \frac{7}{16}$	$33_{4}^{\frac{1}{4}}$	$5^{\frac{5}{5}}$	$3{ }_{8}^{1}$	3	15	$2 \frac{1}{15}$	$8 \frac{1}{2}$	$3 \frac{1}{2}$
	$\frac{1}{16}$	12_{16}^{9}	$3{ }_{3}^{11} 1$	$5 \frac{5}{16}$	$3 \frac{1}{8}$	3	$1 \frac{5}{8}$	$2{ }^{3}$	$8 \frac{3}{8}$	$3 \frac{5}{8}$

$8^{\prime \prime}$ Columns;
4 Z bars, $4^{\prime \prime}-4 \frac{1}{8}^{\prime \prime}$ deep,
1 Web plate $6 \frac{1}{2}{ }^{\prime \prime} \times$ thickness of \mathbf{Z} bars.

\#		A	B	C	D	E	F	G	H	K
\%			$4 \frac{1}{8}$	$6{ }^{3} \mathrm{~B}$ \%	$3{ }^{3}$		$1{ }^{\frac{3}{4}}$			
항.	$\frac{5}{16}$	$15{ }^{8}$	$4{ }^{4} 8$	$6 \frac{1}{15}$	${ }^{3}{ }_{3}^{8}$	$3_{3 \frac{1}{4}}^{4}$	$1{ }^{13}$	${ }_{3}^{1 \frac{1}{8}}$	9^{9}	${ }^{4} 4$
¢	$\frac{15}{\frac{3}{8}}$	$15 \frac{1}{16}$	$4 \frac{5}{16}$	$6^{\frac{3}{16}}$	$3{ }^{3}$	3	$1{ }^{1}$	$3^{3} \frac{3}{16}$	$9{ }^{1}$	$4 \frac{1}{2}$
	${ }_{1}^{7}{ }^{7}$	$14 \frac{1}{1} \frac{1}{6}$	$4{ }^{\frac{7}{7}}$	6	$3 \frac{3}{8}$	$3{ }^{\frac{1}{4}}$	$1{ }^{13}$	$3 \frac{1}{16}$	$9{ }^{\frac{3}{8}}$	$4 \frac{7}{16}$
E	$\frac{1}{2}$	14^{3}	$4 \frac{5}{16}$	6	3^{33}	$3{ }_{4}^{1}$	${ }^{13}$	${ }^{3 \frac{1}{8}}$	$9{ }^{1}$	$4{ }^{19}$
.	$\frac{9}{16}$	$14 \frac{7}{\frac{7}{1}}$	$4{ }^{\frac{13}{32}}$	6	$3{ }^{3}$	$3{ }^{\frac{1}{7}}$	$1{ }^{13}$	${ }_{3}{ }_{1}{ }^{3} 6$	$9 \frac{1}{3}$	$4 \frac{1}{1} 1$
	-				3_{3}^{33}	$3{ }_{3}^{\frac{1}{4}}$	$1{ }^{13}$		9	
	$\frac{11}{16}$	$14^{9} \frac{9}{16}$	$4{ }^{13}{ }^{13}$	$5{ }^{\frac{1}{3} 8}$	${ }^{33}$	$3{ }_{4}^{1}$	$1{ }^{13}$	${ }^{3}$	$8{ }^{8}$	$4 \frac{4}{4}$
	$\frac{3}{4}$	$14 \frac{11}{16}$	4 $\frac{1}{2}$	518	$3{ }^{3}$	$3 \frac{1}{4}$	$1 \frac{3}{4}$	$3 \frac{3}{16}$	$8{ }_{4}$	$4 \frac{7}{8}$

198 THE PASSAIC ROLIING MILL COMPANY.

Z BAR COLUMN DIMENSIONS, in inches.

$10^{\prime \prime}$ Columns; $4 \boldsymbol{Z}$ bars, $5^{\prime \prime}-5{ }^{\text {LI }}$ deep, 1 Web plate $\boldsymbol{\gamma}^{\prime \prime} \times$ thickness of \mathbf{Z} bars.

		A	B	C	D	E	F	C	H	K
	$\begin{gathered} \frac{5}{16} \\ \frac{3}{8} \\ \frac{7}{1} \\ \frac{7}{16} \\ \frac{1}{2} \\ \frac{3}{16} \\ \frac{1}{16} \\ \frac{5}{8} \\ \frac{11}{16} \\ \frac{3}{4} \\ \frac{13}{4} \\ \hline 16 \\ \hline \end{gathered}$	$\begin{aligned} & 16_{1}^{\frac{1}{6}} \\ & 16_{1}^{13} \\ & 16_{1}^{15} \\ & 166_{2}^{\frac{1}{2}} \\ & 16_{8}^{5} \\ & 16^{3} \\ & 16_{8}^{3} \\ & 16_{2}^{1} \\ & 16_{8}^{\frac{3}{8}} \end{aligned}$		$\begin{aligned} & 6 \frac{9}{15} \\ & 6_{1}^{9} \\ & 6 \frac{9}{16} \\ & 6 \frac{3}{x} \\ & 6 \frac{3}{8} \\ & 6 \frac{3}{8} \\ & 67_{16}^{3} \\ & 6_{1}^{3} \frac{3}{16} \\ & 6_{16}^{3} \end{aligned}$		31 3 $3 \frac{1}{2}$ 3 3 3 3 3 3	$1 \frac{7}{8}$ 17 178 178 $1 \frac{7}{8}$ $1 \frac{7}{8}$ $1 \frac{7}{8}$ $1 \frac{7}{8}$ $1 \frac{7}{8}$ 17		$10 \frac{3}{8}$ $10 \frac{1}{4}$ $10 \frac{1}{8}$ 10 97 $9 \frac{7}{8}$ 9 $9 \frac{5}{8}$ 99 98 98	
$\begin{gathered} 12^{\prime \prime} \text { Columns } \\ 4 \boldsymbol{Z} \text { bars, } 6^{\prime \prime}-\dot{6}_{8}^{1 \prime \prime} \text { deep, } \\ 1 \text { Web plate } 8^{\prime \prime} \times \text { thickness of } \boldsymbol{Z} \text { bars. } \end{gathered}$										
$\begin{aligned} & \text { Diameter of bolt or rivet, } \\ & \frac{3}{4}^{\prime \prime} \end{aligned}$		A	B	C	D	E	F	C	H	K
	$\frac{3}{8}$	$19{ }^{\frac{1}{16}}$	$6{ }_{16}^{3}$	$7 \frac{1}{4}$	$4 \frac{1}{8}$	$4 \frac{1}{4}$	2	$3 \frac{1}{2}$	11震	$6 \frac{3}{8}$
	$1^{7} 6$	$19 \frac{3}{16}$	$6 \frac{9}{32}$	$7 \frac{1}{4}$	$4 \frac{1}{8}$	$4 \frac{1}{4}$	2	$3{ }^{9} 6$	$11 \frac{3}{8}$	$6 \frac{5}{8}$
	$\frac{1}{2}$	$19 \frac{5}{16}$	$6 \frac{3}{8}$	$7 \frac{1}{4}$	$4 \frac{1}{8}$	$4 \frac{1}{4}$	2	$3{ }^{5}$	111 ${ }^{\frac{1}{4}}$	$6{ }_{4}^{3}$
	$\frac{4}{16}$	$18^{\frac{7}{8}}$	6_{32}^{9}	$7 \frac{1}{16}$	$4 \frac{1}{8}$	$4 \frac{1}{4}$	2	$3 \frac{1}{2}$	111 $\frac{1}{8}$	$6{ }_{16}^{9}$
	$\frac{5}{8}$	19	6^{3}	$7 \frac{1}{1,6}$	$4 \frac{1}{8}$	$4 \frac{1}{4}$	2	$3^{\frac{9}{16}}$	11	$6 \frac{11}{16}$
	$\frac{11}{1 / 6}$	$19 \frac{1}{8}$	$6 \frac{15}{32}$	$7 \frac{1}{16}$	$4 \frac{1}{8}$	$4 \frac{1}{4}$	2	35	$10^{\frac{7}{8}}$	$6{ }^{\frac{1}{1} 3}$
	${ }^{\frac{3}{4}} 1$	$18 \frac{3}{4}$	${ }_{6}^{63}$	6_{8}^{7}	$4 \frac{1}{8}$	$4 \frac{1}{4}$	$\stackrel{2}{2}$	$3 \frac{1}{2}$	$10^{\frac{3}{4}}$	6^{3}
	$\frac{13}{1 / 6}$	187	$6{ }^{1} \frac{15}{32}$	$6 \frac{7}{8}$	$4 \frac{1}{8}$	$4 \frac{1}{4}$	2	$3_{1} \frac{9}{6}$	$10 \frac{5}{8}$	$6 \frac{7}{8}$
	$\frac{7}{8}$	19	$6{ }_{1} \frac{9}{6}$	$6 \frac{7}{8}$	$4 \frac{1}{8}$	4 $\frac{1}{4}$	2	$3 \frac{5}{8}$	101	

200 THE PASSAIC ROLIING MILL COMPANY.

Z BAR COLUMIN DIMENSIONS,

 in inches.

14" Columns;
$4 \mathbf{Z}$ bars, $6^{\prime \prime} \times \frac{3^{\prime \prime}}{4} ; 1$ Web plate $8^{\prime \prime} \times \frac{3}{4}{ }^{\prime \prime}$;
2 cover plates $14^{\prime \prime}$ wide.

	Thickness of Cover Plates.	A	B	C	D
	$\frac{3}{8}$	197	66^{3}	$1{ }^{5}$	10^{3}
	Tif	$19{ }^{\frac{1}{2}}$	6_{1}^{13}	15	$10^{\frac{3}{3}}$
	$\frac{1}{2}$	195		$1 \frac{5}{6}$	$10 \frac{3}{\frac{3}{4}}$
		$19{ }^{3}$	6_{1}^{18}	$1{ }^{\frac{5}{8}}$	$10 \frac{3}{4}$
		19^{13}	7	$1{ }^{\frac{5}{8}}$	$10^{\frac{3}{3}}$
		$19{ }^{\frac{7}{8}}$	$7^{7}{ }^{\frac{1}{6}}$	1旁	$10^{\frac{3}{3}}$
		20	${ }_{8} \frac{1}{8}^{1}$	$1{ }^{5}$	10_{4}^{3}
	$\frac{13}{10}$	$20{ }^{1} 6$	${ }_{7}{ }^{3} 16$	$1{ }^{\frac{5}{8}}$	10^{3}
	$\frac{7}{8}$	$20 \frac{1}{8}$	$7 \frac{1}{4}$	15	$10 \frac{3}{4}$

14" Columns;
$4 \mathbf{Z}$ bars, $6 \frac{1}{8}{ }^{\prime \prime} \times \frac{7}{8}{ }^{\prime \prime} ; 1$ Web plate $8^{\prime \prime} \times \frac{7}{\frac{7}{8}}$;
2 cover plates $14^{\prime \prime}$ wide.

	Thickness of Cover Plates.	A	B	C	D
	$\frac{11}{16}$ $\frac{13}{18}$ $\frac{3}{4}$ $\frac{15}{16}$ $\frac{7}{8}$ 1 $1_{1}^{\frac{1}{16}}$ $1_{\frac{1}{6}}^{\frac{1}{8}}$ $1_{1}{ }^{\frac{3}{6}}$ $1_{4}^{\frac{1}{6}}$			$\begin{aligned} & 1^{3} \\ & 1^{3} \\ & 13 \\ & 13 \\ & 13 \\ & 1_{3}^{3} \\ & 1_{3}^{3} \\ & 13 \\ & 1_{3}^{3} \\ & 13 \\ & 1 \frac{3}{4} \end{aligned}$	$\begin{aligned} & 10 \frac{1}{2} \\ & 10 \frac{1}{2} \end{aligned}$

202 THE PASSAIC ROLLING MILL COMPANY.

Z BAR COLUMN DIMENSIONS,

 IN INCHES.
$16^{\prime \prime}$ Columns;
4 Z bars $6 \frac{1}{8}{ }^{\prime \prime} \times \frac{7^{\prime \prime}}{8}$
1 web plate $10^{\prime \prime} \times \frac{7}{8}{ }^{\prime \prime}$
2 cover plates $16^{\prime \prime}$ wide.

	$\begin{aligned} & \text { Thickness } \\ & \text { of } \\ & \text { Cover Plates. } \end{aligned}$	A	B	C	D
	$\begin{aligned} & 1 \\ & 1 \frac{1}{16} \\ & 1 \frac{1}{8} \\ & 1_{1}^{3} \\ & 1 \frac{1}{6} \\ & 1_{5}^{5} \\ & 1^{\frac{1}{8}} \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \frac{1}{8} \\ & 222^{\frac{3}{6}} \\ & 22{ }^{\frac{4}{6}} \\ & 22^{3} \\ & 222^{1} \\ & 22 \frac{9}{16} \end{aligned}$			$12 \frac{1}{2}$ $12 \frac{1}{2}$ 12 $12 \frac{1}{2}$ 122 $12 \frac{2}{2}$ 12 $12 \frac{2}{2}$ 122
		$\begin{aligned} & 22 \frac{5}{8} \\ & 222^{1 /} \\ & 222^{16} \\ & 22 \frac{1}{8} \\ & 23 \\ & 23 \frac{1}{1} \\ & 23 \frac{1}{8} \end{aligned}$	$\begin{aligned} & 8 \\ & 88_{1}^{16} \\ & 8 \frac{1}{6} \\ & 8 \frac{3}{6} \\ & 84 \\ & 8 \frac{1}{6} \\ & 8 \frac{5}{5} \\ & 8 \frac{3}{8} \end{aligned}$		$12 \frac{1}{1}$ $12 \frac{1}{2}$ $12 \frac{1}{2}$ $12 \frac{1}{2}$ 12 12 $12 \frac{1}{2}$ 122
		$\begin{aligned} & 23 \frac{1}{4} \\ & 23{ }^{\frac{1}{5}} \\ & 23_{1}^{7} \\ & 23 \frac{1}{6} \\ & 23 \frac{5}{8} \\ & 23_{1}^{1} \\ & 23_{1}^{13} \end{aligned}$			$12 \frac{1}{2}$ $12 \frac{1}{2}$ $12 \frac{1}{2}$ $12 \frac{1}{2}$ $12 \frac{1}{2}$ 12 $12 \frac{1}{2}$ 12

204 THE PASSAIC ROLLING MILL COMPANY．

SAFE LOADS，IN TONS OF 2000 LBS．，FOR HOLLOW CYLINDRICAL CAST IRON COLUMNS．

Square ends．						Factor of safety of 3 ．						
घ்	ऊ w．	Length of column，in feet．										$\stackrel{\square}{\circ}$号亡． 3 \geqslant
	$\begin{aligned} & \text { U } \\ & \text { H } \\ & \text { E } \end{aligned}$	8	10	12	14	16	18	20	22	24		
6	$\frac{3}{4}$	47	41	36	31	27	24	21			12.4	39
6	1^{4}	60	52	46	40	35	30	26			15.7	49
7	4	60	54	48	43	38	34	30	27	24	14.7	46
7	4	76	69	62	55	49	43	38	34	30	18.9	60
8	$\frac{3}{4}$	72	67	61	55	50	45	40	36	33	17.1	53
8	4	93	86	78	71	64	58	52	47	42	22.0	69
8	$1 \frac{1}{4}$	112	104	94	86	77	69	62	56	51	26.5	83
9	$\begin{array}{r}\text {＋} \\ \frac{3}{4} \\ \hline\end{array}$	85	80	74	68	62	57	52	47	43	19.4	61
9	$1{ }^{4}$	110	103	95	88	80	73	67	61	55	25.1	78
9	$1 \frac{1}{4}$	133	125	115	106	97	89	81	73	67	30.4	95
9	$1 \frac{1}{2}$	155	145	134	123	113	103	94	85	78	35.3	110
10	1	127	120	112	105	97	89	82	76	69	28.3	88
10	$1{ }^{1}$	154	146	136	127	118	109	100	92	84	34.4	107
10	$1 \frac{1}{2}$	180	170	159	148	137	127	117	107	98	40.1	125
10	$1{ }^{\frac{3}{4}}$	203	192	180	168	155	143	132	121	111	45.4	142
11	1	144	137	129	122	114	106	100	91	85	31.4	98
11	$1 \frac{1}{4}$	175	167	158	148	139	129	122	112	103	38.3	119
11	$1 \frac{1}{2}$	204	195	184	173	161	151	143	130	121	44.8	140
11	$1 \frac{3}{4}$	232	221	209	197	184	172	162	148	137	50.9	159
11	2	258	246	233	219	205	191	181	164	152	56.6	176
12	1	160	154	147	139	131	123	115	108	101	34.6	108
12	$1{ }^{1}$	196	188	180	170	160	150	141	132	123	42.2	131
12	$1 \frac{1}{2}$	229	220	210	199	1.87	176	165	154	144	49.5	154
12	$1 \frac{3}{4}$	261	251	239	226	213	201	188	176	164	56.4	176
12	2	291	279	266	252	238	224	210	196	183	62.8	196
13	1	177	170	163	156	148	140	132	124	117	37.7	118
13	$1 \frac{1}{1}$	216	209	200	191	181	172	162	152	143	46.1	144
13	$1 \frac{1}{2}$	254	245	235	224	213	201	190	179	168	54.2	169
13	$1 \frac{3}{4}$	289	280	268	256	243	229	217	204	192	61.9	193
13	2	324	312	300	286	272	257	242	228	214	69.1	216
14	1	193	187	180	173	165	157	149	141	134	40.8	128
14	$1 \frac{1}{4}$	237	229	221	212	203	193	183	173	164	50.1	156
14	$1 \frac{1}{2}$	278	270	260	250	239	227	215	204	193	58.9	184
14	$1 \frac{3}{4}$	318	308	297	285	273	260	246	233	220	67.4	210
14	2	356	345	333	320	305	291	276	261	247	75.4	235
． 15	1	209	204	197	190	183	175	167	159	151	44.0	137
15	$1{ }^{\frac{1}{4}}$	257	250	242	233	224	214	205	195	185	54.0	168
15	$1{ }_{1}^{1}$	303	295	285	275	264	253	241	229	218	63.6	199
15	$1{ }^{\frac{3}{4}}$	347	337	327	315	302	289	276	263	249	72.9	227
15	2	389	378	366	353	339	324	309	294	280	81.7	255
16	1 $1 \frac{1}{4}$	277	270	262	254	245	235	225	216	206	57.8	180
16	$1 \frac{1}{2}$	327	319	311	300	290	278	267	255	244	68.4	214
16	$1 \frac{3}{4}$	375	366	351	344	332	319	306	292	279	78.4	245
16	2	421	411	400	387	373	358	343	328	313	88.0	275
16	$2 \frac{1}{4}$	465	454	441	427	412	396	379	363	346	97.2	304

THE PASSAIC ROLLING MILL COMPANY． 205

SAFE LOADS，IN TONS OF 2000 LBS．，FOR HOLLOW SQUARE CAST IRON COLUMNS．

Square ends．												
	10	Length of column，in feet．										
河	$\begin{aligned} & \text { 总志 } \\ & \text { E } \end{aligned}$	8	10	12	14	16	18	20	22	24		
6	${ }^{\frac{3}{4}}$	64	57	51	45	40	36	32			15.8	49
6	1	81	73	65	58	51	45	40			20.0	63
7	4	80	73	67	61	55	50	45			18.8	59
7	1	102	94	86	78	70	63	57			24.0	75
8	\pm	96	90	83	77	71	65	59	54	49	21.8	68
8	$1{ }^{4}$	123	116	107	99	91	83	76	69	63	28.0	88
8	$1 \frac{1}{4}$	149	139	129	119	110	100	92	84	76	33.8	106
9	－${ }^{\frac{3}{4}}$	112	106	100	93	87	80	74	69	63	24.8	77
9	\pm	144	137	129	121	112	104	96	89	82	32.0	100
9	$1 \frac{1}{4}$	175	166	156	146	136	126	116	107	99	38.8	121
9	$1 \frac{1}{2}$	203	193	182	170	158	146	135	125	115	45.0	141
10	1	166	159	151	142	134	125	117	109	101	36.0	113
10	$1 \frac{1}{4}$	201	193	183	173	163	152	142	132	123	43.8	137
10	$1 \frac{1}{2}$	235	225	214	202	189	177	166	154	143	51.0	159
10	$1 \frac{3}{4}$	266	254	242	228	215	201	188	175	162	57.8	181
11	1	187	180	172	164	156	147	138	130	192	40.0	125
11	$1 \frac{1}{4}$	297	219	210	200	190	179	169	158	148	48.8	152
11	$1{ }^{\frac{1}{2}}$	266	256	246	234	222	209	197	185	174	57.0	178
11	$1 \frac{3}{4}$	302	291	279	266	252	238	224	210	197	64.8	202
11	2	336	324	310	295	280	264	249	234	219	72.0	225
12	1	208	201	194	186	177	169	160	151	143	44.0	138
12	$1 \frac{1}{4}$	254	246	237	$2 \cdot 27$	217	206	196	185	174	53.8	168
12	$1 \frac{1}{2}$	297	288	278	266	254	242	229	217	205	63.0	197
12	$1 \frac{3}{4}$	338	328	316	303	289	275	261	247	233	71.8	224
12	2	377	366	352	338	323	307	291	275	260	80.0	250
13	1	228	222	215	208	199	191	182	173	164	48.0	150
13	$1 \frac{1}{4}$	279	272	263	254	214	233	223	212	201	58.8	184
13	$1 \frac{1}{2}$	328	319	309	298	286	274	261	249	236	69.0	216
13	$1 \frac{3}{4}$	375	365	353	341	327	313	298	284	270	78.8	246
13	2	419	407	394	380	365	350	334	317	301	88.0	275
14	1	249	243	236	229	221	213	204	195	186	52.0	163
14	$1 \frac{1}{4}$	305	298	290	281	271	261	250	239	228	63.8	199
14	$1 \frac{1}{2}$	359	351	341	330	319	307	294	281	268	75.0	234
14	$1{ }^{\frac{3}{4}}$	411	401	390	378	365	351	336	322	307	85.8	268
14	2	460	449	437	423	408	393	376	360	344	96.0	300
15	1	270	264	258	250	243	235	226	217	208	56.0	175
15	$1 \frac{1}{4}$	331	324	316	308	298	288	277	266	255	68.8	215
15	$1 \frac{1}{2}$	390	382	373	362	351	339	327	314	301	81.0	253
15	$1 \frac{3}{4}$	446	437	427	415	402	388	374	359	345	92.8	289
15	2	501	490	479	465	451	436	420	403	386	104.0	325
16	$1 \frac{1}{4}$	357	350	343	334	325	315	305	294	286	73.8	231
16	$1 \frac{1}{2}$	421	413	404	394	383	372	359	347	334	87.0	272
16	$1 \frac{3}{4}$	482	474	463	452	440	426	412	397	383	99.8	312
16	2	541	532	520	507	493	478	463	446	429	112.0	350
16	$2 \frac{1}{4}$	598	588	575	561	545	529	511	493	475	123.8	387

ULTIMATE STRENGTH OF

 HOLLOW CYLINDRICAL AND RECTANGULAR CAST IRON COLUMNS.Ultimate Strength in Pounds per Square Inch : CYLINDRICAL COLUMNS. RECTANGULAR COLUMNS.

Square Bearing: 80000	Pin and Square: 80000	$\begin{aligned} & \text { Pin } \\ & \text { Bearing: } \\ & 80000 \end{aligned}$	Square Bearing : 80000	Pin and Square: 80000	Pin Bearing : 80000
$1+\frac{(12 L)^{2}}{}$	$1+\frac{3(12 L)^{2}}{}$	$(12 L)^{2}$	$1+3(12 L)^{2}$	$\underline{9(12 L) 2}$	$3(12 L)^{2}$
$800 d^{2}$	$1600 d^{2}$	$400 d^{2}$	$3200 d^{2}$	$6400 d^{2}$	1600 a

$\frac{L}{d}$	CYLINDRICAL COLUMNS. Ultimate Strengthinlbs. persq.in.			RECTANGULAR COLUMNS. Ultimate Strengthin lbs. persq.in.		
	Square Bearing.	Pin and Square.	Pin Bearing.	Square Bearing.	Pin and Square.	Pin Bearing.
0.5	76560	74940	73390	77380	76150	74940
0.6	75130	72910	70820	76290	74560	72910
0.7	73520	70650	68000	75030	72780	70650
0.8	71740	68210	65020	73640	70820	68210
0.9	69820	65640	61940	72110	68730	65640
1.0	67800	62990	58820	70480	66520	62990
1.1	65690	60300	55730	68790	64260	60300
1.2	63530	57600	52690	67000	61940	57600
1.3	61340	54930	49740	65140	59600	54960
1.4	59140	52310	46900	63260	57270	52320
1.5	56940	49770	44200	61350	54960	49760
1.6	54760	47300	41630	59450	52680	47300
1.7	52620	44940	39210	57550	50460	44960
1.8	50530	42670	36930	55670	48300	42670
1.9	48490	40510	34790	53800	46230	40510
2.0	46510	38460	32790	51940	44200	38460
2.1	44600	36520	30920	50160	42260	36520
2.2	42750	34680	29180	48400	40400	34680
2.3	40980	32940	27540	46670	38630	32950
2.4	39280	31310	26030	44990	36930	31310
2.5	37650	29770	24620	43390	35310	29760
2.6	36090	28320	23300	41820	33770	28320
2.7	34600	26950	22070	40320	32310	26950
2.8	33180	25670	20930	38870	30920	25670
2.9	31820	24460	19860	37470	29600	24460

For safe quiescent loads, as in buildings, divide the above values by 8 .

FOUNDATIONS.

The proper design of foundations is of the utmost importance. The maximum load carried by the foundation must first be obtained. The loads to be considered in buildings are of two kinds: the dead load, which is the actual weight of the materials of construction ; and the live load, which is the weight that the floors may be required to support. The live load is variable. In office buildings, parts of the floors may be loaded to their full capacity, but the probability of the entire structure being so loaded is remote; while in breweries, storage warehouses and buildings for similar purposes, all the floors may be fully loaded. The maximum of both dead and live loads must be considered, and the area of the footing of the foundation must be such that the greatest pressure on different soils does not exceed the following:

> Kind of material.

Safe pressure in tons per sq. ft.
Compact bed rock, if of granite. 30
" " " "، " limestone 25
" " ، " sandstone 18
Soft friable rock . 5 to 10
Clay, in thick beds, absolutely dry 4
moderately dry 2
Soft clay. 1
Dry coarse gravel, well packed and confined..... 6
Compact dry sand, well cemented and confined.. 4
Clean dry sand, in natural beds and confined. ... 2
Good solid dry natural earth........................ . . . 4

Except where foundations are upon rock, the possibility of the bearing material being loosened, by water or by adjacent building operations, must be considered and proper precautions must be taken to prevent it.

Foundations upon yielding material will always settle more or less. In order that this settlement shall be uniform, it is essential that the various foundations in a structure shall produce equal pressures per unit of area on their footings; that is, the areas of the foundations must be proportional to the loads carried. In office buildings, where the actual live load is variable and rarely approaches the load assumed, the best results in the way of equal settlement of the foundations are obtained by proportioning the areas of the footings so that the dead loads produce equal pressures. Thus, if in such a building the maximum foundation supports a dead load of 200 tons and a live load of 200 tons, and another foundation a dead load of 150 tons and a live load of 100 tons, the total load on the first foundation is 400 tons and, assuming the soil to carry a load of 4 tons per sq. ft., the area required is roo sq. ft. This corresponds with a pressure of 2 tons per sq. ft. for the dead load alone. Using this same pressure for dead load requires an area of $75 \mathrm{sq} . \mathrm{ft}$. for the second foundation, instead of an area of 62.5 sq . ft . which would have been obtained had the foundation been proportioned for the total live and dead load at 4 tons per sq. ft .

The foundation illustrated in Fig. I is frequently used when the soil is good dry natural earth capable of safely supporting
from 3 to 4 tons per square foot. Such a foundation must be designed to distribute the concentrated load which it supports over the proper area of footing required. Thecapstone should be of granite or limestone having a minimum thickness of one foot, and not less than one-fifth its greatest dimension. The body of the pier should be of first quality brick laid in Portland cement mortar, and the footing of a layer of concrete not less than 18" thick. When the load is great, a heavy cast iron pedestal should be used to distribute the load over the cap-
 stone. The height of this pedestal should be one-half the greatest dimension of its Ease. The requisite spread of footing is obtained by offsets in the successive courses, and the proper design of the foundation is based upon the following values:-

Maximum pres-	Maximum offset of sure, lbs. per cq. in.
course in terms	
of thickness.	

To illustrate the application of these principles they will be applied to the design of a foundation for a load of 400 tons on a soil capable of supporting a load of 4 tons per square foot. The size of the cast iron base will be determined by limiting its pressure on the granite cap to 350 lbs. per square inch ; then,

400 tons $=800,000$ lbs. $\div 350=2286$ sq. ins. required.
A base, $48^{\prime \prime}$ square, having an area of 2304 sq. ins., will be required.

The size of the granite cap will be determined by limiting its pressure on the brickwork to 200 lbs . per sq. in.; then,

$$
800,000 \mathrm{lbs} . \div 200=4,000 \text { sq. ins. required. }
$$

A capstone, $5^{\prime} 4^{\prime \prime}$ square, has an area of 4096 sq. ins., and is the size required. Its thickness will be $15^{\prime \prime}$, or about one-fourth its base.

The area of the footing required is,

$$
400 \text { tons } \div 4=100 \text { sq. } \mathrm{ft} . \text { required. }
$$

The footing will be of concrete, roft. square, and $18^{\prime \prime}$ thick. The projection of this footing will be one-half its thickness, or $9^{\prime \prime}$, all around; so that the brickwork must be $8^{\prime} 6^{\prime \prime}$ square where it rests upon the concrete. The projection of a single course of brickwork is limited to $I^{\prime \prime}$. Each course of brick thus adds $2^{\prime \prime}$ to the spread of the foundation, and to obtain the necessary spread
in the brickwork, from the under side of the capstone to the top of the concrete, requires ig courses of brick. This foundation is illustrated in Fig. I.

PILE FOUNDATIONS.

Properly driven timber piles make a satisfactory and permanent foundation if they are kept submerged under water. Piles are usually driven from 2 to 3 feet between centers, the tops cut off level and capped with a timber grillage, care being observed to have all wood kept below low-water line. The maximum load on a single pile should be limited to 20 tons. Where piles are driven to bed rock, and the surrounding soil is stiff enough to supply sufficient lateral support, the bearing power of the pile is equal to the safe direct compression on its least cross section; if the surrounding soil is plastic, the bearing power of the pile is its safe load computed as a column of the total length of the pile. Where piles are driven into yielding soil without reaching rock, the safe load on the pile should not exceed the value given by the formula,

$$
\mathrm{L}=\frac{2 W H}{\mathrm{p}+1}
$$

where L is the safe load in tons on the pile; W is the weight of the hammer in tons; H is the fall of the hammer in feet; and p is the penetration of the pile, under the last blow of the hammer, in inches. The broom and splinters should be removed from the head of the pile in obtaining the penetration under the last blow.

STEEL BEAM GRILLAGE.

Where foundations rest upon a yielding stratum, a grillage consisting of two or more layers of steel I beams furnishes an economical and satisfactory method of distributing the load. Fig. 2 illustrates such a foundation. A bed of concrete, not less than 12 inches thick, is laid, on which the steel I beams are placed side by side, a sufficient number of proper size being used to distribute the load over the desired area. This layer of beams is covered with concrete well rammed between the beams. The second layer of beams on which the foot of the column is to rest is laid across the first layer, reaching to the extreme outer edge of the first layer, and is also filled between and covered with concrete. The beams of each layer should be connected with separators and tie rods. The beams should have a clear
space of at least 3 inches between flanges to permit ramming the concrete, and should not be spaced exceeding 18 inches on centers.

When the load is great, the number of beams required in the second layer may necessitate a greater spread than can be spanned by the shoe or the foot of the column, in which case a third layer of short beams or a box girder may be used to advantage.

This type of foundation is adapted for heavy loads, as the requisite spread of foundation area is obtained in small depth. A useful application of the method is in situations where a thin and compact stratum overlies another of a more yielding nature, and where the available height of foundation is limited; as the requisite area of the footing may be obtained without penetrating the firmer stratum, and without undue vertical encroachment.

The method of calculating the strength of grillage beams is as follows:-
Let $\mathrm{W}=$ Superimposed load on beam.
$\mathrm{B}=$ Length over which superimposed load is applied.
$\mathrm{L}=$ Length of beam.

The superimposed load is considered as uniformly distributed over the length on which it is applied, and the pressure of the soil as uniformly distributed over the entire length of the beam. The maximum bending moment is at the center of the length of the beam and is equal to $1 / 8 \mathrm{~W}(\mathrm{~L}-\mathrm{B})$. If the load is taken in pounds, the bending moment will be found either in foot lbs. or in inch lbs., according as the lengths are taken in feet or in inches; and the size of the steel beam required can be found in the manner explained under the Strength of Beams.

To facilitate calculation, the following table gives the greatest safe loads on Passaic steel I beams used in grillages for various values of (L-B). In using this table, it is only necessary to assume the number of beams to be used in the layer. The superimposed load on each beam equals the total load on the layer divided by the number of beams in the layer, and by reference to the table, the proper beam capable of supporting this load is at once determined.

To illustrate the application of the table, take a foundation carrying a load of 400 tons on a soil capable of supporting a load of 2 tons per square foot. The required area of the footing will be 200 sq. ft . If a square footing is used, a square with I 4 - ft . sides has an area of 196 sq . ft . and will be assumed as ample. The upper layer of beams will be proportioned first.

The base of the column will be assumed as 4 ft . square; then, in this case, B is 4 ft ., L is I 4 ft ., and ($\mathrm{L}-\mathrm{B}$) is to ft . The upper layer will be assumed to consist of 5 beams, as this number is the greatest that will provide sufficient space between the flanges of the beams to pernit satisfactory ramming of the concrete filling. Each beam will then take $\frac{1}{5}$ the total load, or 80 tons. By referring to the table, a $20^{\prime \prime} \times 90 \mathrm{lb}$. I has a safe load of 80.3 tons when $\mathrm{L}-\mathrm{B}$ is io ft . The upper layer will, therefore, consist of five $20^{\prime \prime} \times 90 \mathrm{lb}$. I beams,

In the under layer, in this instance, L and B have the same values as in the upper layer. If the beams are spaced about $12^{\prime \prime}$
on centers, there will be 15 beams in the layer, each carrying ${ }_{15}^{15}$ the total load, or $262 / 3$ tons. By referring to the table, the lightest beam, whose safe load is nearest to this, is a $15^{\prime \prime} \times 42 \mathrm{lb}$. I which has a safe load of 30.6 tons. A less number of beams can therefore be used. Thirteen beams, $15^{\prime \prime} \times 42 \mathrm{lbs}$., will provide for the total load within a small amount, which considering the nature of the load, can be neglected. This foundation is illustrated in Fig. 2.

Where two columns, carrying unequal loads, rest upon the same grillage, care should be taken to have the center of gravity of the grillage coincide with the point of application of the resultant of the loads on the columns, in order to secure uniform pressure on the footing.

Frequently threc columns are supported on the same grillage, the beams being continuous. The calculation of such a foundation is involved, and the distribution of pressure uncertain. It is advisable to design such a foundation with a system of simple beams, giving a distribution of weight readily determined by the application of the simple law of the lever.

CANTILEVER FOUNDATIONS.

Where it is not advisable to undermine existing walls on adjoining property, or where it is not possible to have the wall columns over the center of the foundations along an existing wall, cantilever girders are used to carry the wall columns adjacent to the building line. A simple type of such a foundation is illustrated in Fig 3.

The foundation is placed as near the existing wall as possible, and the wail column rests upon a girder which overhangs the foundation and is anchored to one of the interior columns. The maximum bending moment is obtained by multiplying the load on the wall column by the distance between the center of the column and the center of the supporting foundation. The size of cantilever beams can then be determined in the manner already given in the article on Strength and Deflection of Beams. Care must be observed to have the minimum load on the interior column greater than the maximum lifting tendency produced by the cantilever.

212 THE PASSAIC ROLLING MILL COMPANY.

PASSAIC STEEL I BEAMS,

USED AS GRILLAGE BEAMS IN FOUNDATIONS.

$\mathbf{L}=$ Length of Beam in Feet.
$\mathbf{B}=$ Length, in Feet, over which superimposed Load is distributec..

Total Safe Load on a single Beam, in Tons of 2000 Lbs., for the following values of $\mathbf{L}=\mathbf{B}$.

Seam.
Unloaded Length of Beam, $\mathbf{L}-\mathbf{B}$, in feet.

$\begin{array}{l\|l} \text { Dep. } \\ \text { Ins. } \end{array}$	$\begin{gathered} \text { Wgt. } \\ \text { bss. } \\ \text { per } \\ \text { Ft. } \end{gathered}$	5	6	7	8	9	10	11	12	13	14	15
20	90		134	115	100	89.2		73.0	60.9		, 4	53.6
20	85		124	106	93.0	82.6	74.3	67.6	62.0	57.2	53.1	49.6
20	80		119	102	89.6	79.8	71.7	65.2	59.8		51.2	47.8
20	75		111	95.0	83.2	73.8	66.5	60.55	55.4	51.2	47.5	44.3
20	70			91.2	79.8	71.0	63.9	58.15	53.2	49.1	45.6	42.6
20	65			87.5	76.6	68.2	61.3	55.75	51.0	47.1	43.8	40.9
18	80		112	95.8	83.8	74	67.0	60.9	55.9	1	47.	44.7
18	75		108	92.4	80.8	71.8	64.7	58.85	53.9		46.2	43.1
18	70		96.2	82.4	72.0	64.0	57.7	52.4	48.1	44.4	41.2	38.4
18	65		87.5	75.0	65.6	658.4	52.5	47.7	43.8	40.4	37.5	35.0
18	60		83.6	71.6	62.8	55.850	50.2	45.6	41.8	38.6	35.8	33.4
18	55			68.4	59.8	853.2	47.8	43.5	39.8	36.8	34.2	31.9
15	75	102	85.4	73.2	64.0	57.0	1.2	46.6	42.7	39	6.6	64.2
15	70	98.5	82.2	70.4	61.6	54.8	49.3	44.8	41.1	37.9	35.2	32.8
15	65	94.6	78.8	67.65	59.2	52.6	47.3	43.0	39.4	36.4	33.	31.5
15	60		75.6	64.8	56.6	50.4	45.4	41.2	37.8	34.9	32.4	30.2
15	55		66.0	56.6	49.6	44.0	39.6	36.0	33.0	30.5	28.3	26.4
15	50		62.8	53.8	47.0	41.8	37.7	34.2	31.4	29.0	26.9	25.1
15	45		52.8	45.4	39.6	635.2	31.7	28.8	26.4	24.4	22.7	21.1
15	42		50.8	43.6	38.4	34.0	30.6	27.8	25.4	23.5	21	20.4
12	65	70.0	58.4	50.0	43.7	38.9	35.0	31.8	29.2	26.	25.0	23.3
12	60	66.8	855.6	47.8	41.8	837.1	33.4	30.4	27.8	25.7	23.9	22.3
12	55	63.6	53.0	45.6	69.8	835.4	31.8	28.8	26.5	24.5	22.8	21.2
12	50	56.2	47.0	40.2	35.2	31.2	28.1	25.6	23.5	21.6	20.1	18.8
12	45	53.2	44.2	38.0	133.2	229.5	26.6	24.2	22.1	20.4	19.0	17.7
12	40	50.0	41.6	35.8	81.3	27.8	25.0	22.7	20.8	19.2	17.9	16.7
12	35	41.4	34.6	29.6	625.9	23.0	20.7	18.8	17.3	15.9	14.8	13.8
12	$31 \frac{1}{2}$	39.2	32.8	28.0	24.5	21.8	19.6	17.9	16.4	15.1	14.0	13.1

THE PASSAIC ROLLING MILL COMPANY. 213

PASSAIC STEEL I BEAMS,

USED AS GRILLAGE BEAMS IN FOUNDATIONS.

$\mathbf{L}=$ Length of Beam in Feet.
$\mathbf{B}=$ Length, in Feet, over which superimposed Load is distributed.

Total Safe Load on a single Beam, in Tons of 2000 Lbs., for the following values of $L-B$.

Beam.		Unloaded Length of Beam, L-B, in feet.										
Dep. Ins.	$\begin{gathered} \text { Wgt. } \\ \text { lbs. } \\ \text { per } \\ \text { Ft. } \end{gathered}$	3	4	5	6	7	8	9	10	11	12	13
10	40		47.6	38.0	31.8	27.2	23.8	21.2	19.0	17.3	15.9	4.7
10	35		44.3	35.4	29.6	25.3	22.2	19.71	17.7	16.1	14.8	13.6
10	33			34.4	28.6	24.6	21.5	19.1	17.2	15.6	14.3	13.2
10	30			28.8	24.0	20.6	18.0	16.0	14.4	13.1	12.0	11.1
10	27			27.2	22.6	19.4	17.0	15.1	13.6	12.4	11.3	10.5
10	25			26.2	21.8	18.7	16.3	14.5	13.1	11.9	10.9	10.1
9	33		36.4	$\overline{29.0}$	24.2	20.7	18.2	16.1	14.5	13.2	12.1	11.2
9	30		34.6	27.6	23.0	19.7	17.3	15.4	13.8	12.6	11.5	10.6
9	27			26.2	21.8	18.7	16.4	14.6	13.1	11.9	10.9	10.1
9	25			21.8	18.2	15.6	13.7	12.2	10.9	9.9	9.1	8.4
9	$23 \frac{1}{3}$			21.2	17.6	15.1	13.2	11.7	10.6	9.6	8.8	8.1
9	21			20.0	16.7	14.3	12.5	11.1	10.0	9.1	8.3	7.7
8	27	$\overline{34.5}$	25.8	20.6	17.2	14.8	12.9	11.5	10.3	9.4	8.6	8.0
8	25	33.1	24.8	19.8	16.5	14.2	12.4	11.0	9.9	9.0	8.3	7.6
8	22		23.2	18.6	15.5	13.3	11.6	10.3	9.3	8.5	7.8	7.2
8	20		20.0	16.0	13.3	11.4	10.0	8.9	8.0	7.3	6.7	6.1
8	18		18.9	15.1	12.6	10.8	9.5	8.4	7.6	6.9	6.3	5.8
7	22	$\overline{25.4}$	19.1	15.2	12.7	10.9	9.5	8.5	7.6		6.4	
7	20		18.1	14.5	12.1	10.4	9.1	8.1	7.3	6.6	6.1	
7	$17 \frac{1}{z}$		15.3	12.2	10.2	8.7	7.6	6.8	6.1	5.6	5.1	
7	15		14.1	11.3	9.4	8.1	7.1	6.3	5.7	5.1	4.7	
6	20	18.3	13.7	11.0	9.2	7.8	6.9	6.1	5.5			
6	$17 \frac{1}{2}$	17.0	12.7	10.2	8.5	7.3	6.4	5.7	5.1			
6	15	15.7	11.8	9.4	7.9	6.7	5.9	5.2	4.7			
6	12	12.9	9.7	7.8	6.5	5.5	4.8	4.3	3.9			
5	15	12.0	9.0	7.2	6.0	5.2	4.5					
5	13	11.2		6.7			4.2					
5	12	9.6	7.2	5.8	4.8	4.1	3.6					
5	93	8.6	6.5	5.2	4.3	3.7	3.3					
4	10	6.1	4.6	3.7	3.1							
4	$7 \frac{1}{2}$	5.2	3.9	3.1	2.6	2.2						
4	6	4.1	3.1	2.5	2.0	1.8						

WIND BRACING.

Adequate provision must be made in all buildings to resist horizontal wind pressure. In mercantile and office buildings the walls and partitions provide a certain amount of resistance, though in the skeleton construction, now extensively used for tall buildings, the thin curtain walls and the extremely light tile partitions provide a very uncertain means of resistance.

A building, whose height does not exceed twice its base, and which has a well-constructed steel frame, scarcely needs a special system of wind bracing to make it secure, if the exterior walls are well built and of sufficient thickness, or if it is provided with substantial interior brick partitions. The columns should be of steel of any of the usual types, and be in lengths of two or more stories and thoroughly spliced at the joints with plates and rivets sufficient to make the section nearly continuous as far as the transverse bending is concerned. The column splices should be arranged so that not more than one-half the total number of columns splice at any one floor level. All connections between columns, girders and beams should be riveted.

Buildings, whose height exceeds twice their base, should have wind-bracing, of some form, calculated to resist a horizontal wind pressure of 30 lbs . per sq. ft . on their greatest exposed surface. It is seldom possible to use diagonal rods between the columns, and either of the two following forms of bracing are generally used in buildings. The columns in massive buildings may be considered as fixed at the ends, but in sheds and low mill and shop buildings the columns are not fixed at the ends unless special provision is made to anchor them very securely to foundations of much larger size than is generally provided. The total strains, due to the combination of the maximum effects of live, dead and wind loads, should not exceed the following, in lbs. per sq. in.,

Tension	Massive Buildings. .20,000	Shed Buildings. 18,000
	20,000-75 l	18,000-75 $\frac{l}{r}$

The wind increases the compression on the leeward columns and also produces a bending in the columns, both of which effects must be considered.
$\mathrm{H}=$ total horizontal force acting at top of frame.
Posts considered as fixed at both ends.
All members constructed to resist tension or compression.

Tension or compression in brackets, $=\mathrm{H}\left(\frac{1}{2}+\frac{a}{4 d}\right) \frac{y}{b}$

$$
\begin{array}{ll}
\text { " } \quad \text { " } & \text { " posts, } \ldots=\mathrm{H}\left(d+\frac{a}{2}\right) \frac{1}{l} \\
" \quad \text { " } & \text { " girder, } .=\mathrm{H}\left(1+\frac{a}{4 d}\right)
\end{array}
$$

Bending moment on posts, $\ldots \ldots=\mathrm{H} \frac{a}{4}$

$$
\text { " " " girder, } \ldots \ldots=\mathrm{H}\left(\frac{1}{2}-\frac{b}{l}\right)\left(d+\frac{a}{2}\right)
$$

$\mathrm{H}=$ total horizontal force acting at top of frame.
Posts considered as fixed at both ends. All members constructed to resist tension or compression.

Tension or compression in MN, $=\mathrm{H}\left(1+\frac{a}{4 d}\right)$

$$
\begin{aligned}
& \text { ". " } \\
& \text { " " " } \\
& \text { " " " } \\
& \text { " } \mathrm{OP}, \ldots . .=\mathrm{H}\left(\frac{1}{2}+\frac{a}{4 d}\right) \\
& \text { " diagonals, }=\mathrm{H}\left(\frac{d}{2}+\frac{a}{4}\right) \frac{y}{l d} \\
& \text { " posts, } \ldots .=\mathrm{H}\left(d+\frac{a}{2}\right) \frac{1}{l}
\end{aligned}
$$

Bending moment on posts, $=\mathrm{H} \frac{a}{4}$
Note. -If the posts are not fixed at the ends, substitute $2 a$ for a in the above formulæ.

216 THE PASSAIC ROLLING MILL COMPANY.

STRENGTH OF WOODEN BEAMS.

The following table gives the safe uniformly distributed loads, in lbs., on rectangular wooden beams one inch thick, for a maximum allowable fiber strain of $1,000 \mathrm{lbs}$. per sq. in.

For the different kinds of wood, ordinarily used in construction, the values given in the table are to be multiplied by the following factors:
\(\left.\left.\left.$$
\begin{array}{lll}\text { Spruce or White Pine, } & 0.75 \\
\text { White Oak, } \\
\text { Southern Yellow Pine, } & 1.00 \\
1.25\end{array}
$$\right\} $$
\begin{array}{ll}\text { For } & 1.00 \\
\text { ordinary } \\
\text { purposes. }\end{array}
$$\right\} \begin{array}{l}1.25

1.50\end{array}\right\}\)| For |
| :--- |
| purely |
| static |
| lads. |

$\begin{gathered} \text { Span, } \\ \text { in } \\ \text { feet. } \end{gathered}$	DEPTH IN INCHES.										
	6	7	8	9	10	11	12	13	14	15	16
5	800	$\overline{1090}$	1420	$\overline{1800}$							
6	670	910	1190	1500	1850	2240					
7	570	780	1020	1290	1590	1920	2290				
8	500	680	890	1130	1390	1680	2000	2490	2740	3130	
9	440	610	790	1000	1230	1490	1780	2210	2430	2780	3160
10	400	540	710	900	1110	1340	$\overline{1600}$	$\overline{1990}$	$\overline{2190}$	$\overline{2500}$	$\overline{2840}$
11	360	495	650	820	1010	1220	1450	1810	1990	2270	2590
12	330	450	590	750	930	1120	1330	1660	1820	2080	2370
13	310	420	550	690	860	1030	1230	1530	1690	1930	2200
14	290	390	510	640	800	960	1150	1430	1570	1790	2040
15	270	360	480	600	740	900	1070	$\overline{1330}$	1460	1670	1900
16	250	340	450	560	700	840	1000	1250	1370	1570	1780
17	240	320	420	530	650	790	940	1170	1290	1470	1680
18	220	300	400	500	620	750	890	1110	1220	1390	1590
19	210	290	380	480	590	710	840	1050	1150	1320	1500
20	200	272	360	450	560	670	800	990	1090	1250	1420
21	190	260	340	430	530	640	760	950	1040	1190	1360
22	180	248	325	410	510	610	730	910	1000	1140	1300
23	175	237	310	390	480	590	700	870	950	1090	1240
24	167	228	297	380	460	560	670	830	910	1040	1190
25	160	218	285	360	450	540	640	800	880	$\overline{1000}$	$\overline{1} 140$
26	154	210	275	350	430	520	620	770	840	960	1100
27	149	202	265	330	410	500	590	740	810	930	1060
28	143	195	255	315	400	480	570	710	780	890	1020
29	138	188	246	307	380	465	550	690	750	86	980
30	134	182	237	297	370	450	530	660	730	830	950

[^4]THE PASSAIC ROLLING MILL COMPANY. 21%

WHITE PINE PURLINS.

Maximum Spans in feet, for the following total uniformly distributed loads.

TotalLoad.	Size of Joists, inches.	Distance from center to center of joists, feet.									
		1	2	3	4	5	6	7	8	9	10
	3×8	16.2	12.9		10.3	9.2	8.5	7.8	7.3	6.9	6.6
	4×8		14.1	12.4	11.21	10.6			8.5	8.0	7.6
	6×8		16.2	14.2	12.91	11.9	11.2	10.	10.4	9.8	9.3
	3				2.51	11.1	10.2	9.4	8.8	8.3	7.9
	4×10		17.	15.5	14.01	12.9	11.	0.9	10.2	9.6	9.1
	6×10		20.3	17.8	16.1	15.0	14.0	13.4	12.5	11.8	11.2
	8×10			19.5	17.71	16.4	15.	14.8	14.1	13.5	12.9
	3×12			16.9	15.01	13.4	12	1.3	0.	10.0	9.5
	4×12		21.2	18.6	16.8	15.5	14.2	13.1	12.3	11.6	11.0
	6×12		24.4	21.3	19.31	18.0	16.9	16.0	15.0	14.2	13.4
	8×12		26.8	23.4	21.21	19.7	18.5	17.7	16.9	16.2	15.5
	10×12			25.2	22.8	$\underline{21.2}$	20.0	19.0	18.2	17.4	16.9
	3×14	28.4	22.5	19.8	17.5	15.7	14.3	13.3	12.4	11.7	11.1
	4×14		24.7	21.6	19.6	18.1	16.5	15.3	14.3	13.5	12.8
	6×14		28.5	24.8	22.6	21.0	19.8	18.8	17.5	16.6	15.7
	8×14		31.2	27.2	24.7	23.0	21.6	20.6	19.6	18.9	18.1
	10×14			29.4	26.6	24.8					19.7
	$3 \times$	14.1	11.3	9.8	8.4	7.5	6.9	6.4	6.0	5.6	5.4
	4×8		12.3	10.8	9.8	8.7	8.0	7.4	6.9	6.5	6.2
	6×8	17.9	14.1	12.4		10.5	9.8	9.1	8.5	8.0	7.6
	3×10	17.7	14.0	11.5	10.2	9.1	8.3	7.7	7.2	6.8	6.5
	4×10	19.4	15.4	13.5	11.4	10.5	9.6	8.9	8.3	7.8	7.4
	6×10	22.4	17.7	15.5	14.1	12.9	11.8	10.9	10.2	9.6	9.1
	8×10	24.5	19.4	17.0	15.4	14.3	13.4	12.6	11.7	11.0	10.5
	3×12	21.3	16.9	14.2	12.3	10.9	10.0		8.7	8.2	7.8
	4×12	23.4	18.5	16.2	14.1	12.7	11.6	10.7	10.0	9.5	9.0
	6×12	26.8	21.3	18.6	16.8	15.5	14.2	13.1	12.3	11.6	10.9
	8×12	29.4	23.4	20.4	18.5	17.2	16.1	15.1	4.1	13.2	12.7
	10×12		25.2	22.0	19.9	18.5	1	16.6	15.8	14.9	14.1
	3×14	24.8	19.6	16.6	14.3	12.8	11.7	10.8			9.1
	4×14	27.2	21.6	18.9	16.6	14.8	13.5	12.5	11.7	11.0	10.5
	6×14	31.4	24	21.	9.	18.1	16.6	15.4	14.3	13.6	12.8
	8×14	34.3	27.2	23.	1.	0.	18.9	7.	6.6	15.6	14.8
	10×14		29.3	25.	23.2	21.6		19.4	18.5	17.4	16.5

The maximum spans given in the table for the above loads, are determined by limiting the deflection to ${ }_{\text {qu }}^{\frac{1}{0} \pi}$ of the span, and the maximum fiber strain to 750 lbs. per square inch, the lesser value given by either condition being used.

YELLOW PINE PURLINS.

Maximum Spans in feet, for the following total uniformly distributed loads.

Total Load.	Size of Joists, inches.	Distance from center to center of joists, feet.									
		1	2	3	4	5	6	7	8	9	10
$\begin{aligned} & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	3×8	19.4	15.4	13.4	12.2	11.3	10.5	9.7	9.2	8.6	8.2
	4×8		16.9	14.8	13.4	12.5	11.7	11.2	10.5	10.	9.4
	6×8			16.9	15.4	14.3	13.5	12.8	12.2	11.8	11.5
	3×102	24.2	19.21	16.81	15.3	14.2	13.3	12.2	11.	10.7	10.2
	4×10		21.21	18.5	16.8	15.6	14.7	13.9	13.2	12.4	11.7
	6×10			21.2	19.2	17.9	16.8	15.9	15.2	14.7	14.2
	8×10				21.2	19.6	18.5	17.5	16.8	16.2	15.6
	3×12	29.1	23.1	20.2	18.3	17.0	15.9	14.6	13.8	12.9	12.2
	4×12		25.4	22.2	20.1	18.7	17.6	16.7	15.8	14.9	14.1
	6×12			25.4	23.1	21.4	20.1	19.2	18.3	17.6	17.0
	8×12				25.4	23.6	22.2	21.1	20.2	19.4	18.7
	10×12					25.4	23.9	22.7	21.7	20.9	20.2
	3×14	34.0	26.92	23.6	21.4	19.8	18.5	17.1	16.0	15.1	14.3
	4×14		29.6	25.9	23.5	21.8	20.5	19.5	18.5	17.4	16.6
	6×14			29.6	27.0	25.0	23.5	22.4	21.4	20.5	19.8
	8×14				29.6	27.5	25.9	24.6	23.5	22.6	21.8
	10×14					29.6	27.9	26.5	25	24.4	23.6
¢	3×8	16.9	13.4	11.7		9.	8.6	7.9		7.0	
	4×8	18.6	14.8	12.9	11.7	10.8	9.9	9.2	8.6	8.1	7.7
	6×8		16.9	14.8	13.4	12.5	11.8	11.2	10.5	9.9	9.4
	3×10	21.2	16.8	14.7	13.1	11.8	10.8	9.9	9.3	8.8	8.3
$\stackrel{\square}{0}$	4×10	23.3	18.5	16.1	14.7	13.6	12.4	11.5	10.8	10.1	9.6
$\begin{aligned} & 0 \\ & \text { H } \\ & 0 \end{aligned}$	6×10		21.1	18.5	16.8	15.6	14.7	13.9	13.2	12.4	11.8
	8×10			20.3	18.5	17.1	16.1	15.3	14.7	14.1	13.5
U	3×12	25.4	20.2	17.6	15.8	14.1	13.0	12.0	11.2	10.5	9.9
	4×12	28.0	22.2	19.4	17.6	16.3	14.9	13.8	12.9	12.1	11.5
	6×12		25.3	22.2	20.2	18.7	17.6	16.8	15.8	14.9	14.1
	8×12			24.5	22.2	20.6	19.4	18.4	17.6	16.9	16.3
	10×12				23.9	22.2	20.9	19.8	18.9	18.2	17.6
$\begin{aligned} & \dot{1} \\ & \stackrel{0}{8} \\ & 8 \end{aligned}$	3×14	29.6	23.5	20.6	18.5	16.5	15.1	14.0	13.1	12.3	11.7
	4×14	32.6	25.8	22.6	20.5	19.0	17.4	16.2	15.1	14.2	13.5
	6×14		29.7	25.8	23.6	21.8	820.5	19.6	18.5	17.4	16.5
	8×14			28.5	25.	24.0	22.	. 21.5	20.5	19.7	18.9
	10×14				27.9	25.8	824.4	23.1	22.	21.3	20.6

The maximum spans given in the table for the above loads, are determined by limiting the deflection to ${ }_{4}^{\frac{1}{0} \overline{0}}$ of the span, and the maximum fiber strain to 1250 lbs. per square inch, the lesser value given by either condition being used.

THE PASSAIC ROLLING MILL COMPANY. 219

YELLOW PINE JOISTS.

Maximum Spans in feet, for the following total uniformly distributed loads.

Total Load.	Size of Joists, inches.	Distance from center to center of joists, inches.						
		12	14	16	18	20	22	24
$\stackrel{\circ}{8}$	2×8	13.4	12.8	12.2	11.7	11.0	10.5	10.1
	3×8	15.4	14.6	13.9	13.4	12.9	12.6	12.2
顽	2×10	16.8	15.9	15.3	14.7	14.2	13.7	13.2
	3×10	19.2	18.2	17.4	16.7	16.2	15.7	15.2
Hz	2×12	20.2	19.1	18.3	17.6	17.0	16.5	15.8
	3×12	23.1	21.9	20.9	20.1	19.4	18.9	18.3
$\stackrel{\sim}{8}$	3×14	26.9	25.5	24.4	23.4	22.7	24.0	21.3
	4×14	29.6	28.2	26.9	25.9	25.0	24.2	23.6
8	3×16	30.8	29.2	27.9	26.8	25.9	25.1	24.4
	4×16	33.9	32.2	30.8	29.6	28.6	27.7	27.0
	2×8	12.6	11.8	11.3	10.9	10.3	9.8	9.4
$\stackrel{\circ}{0}$	3×8	14.3	13.5	12.9	12.4	12.0	11.7	11.3
	2×10	15.6	14.8	14.2	13.6	12.9	12.3	11.8
	3×10	17.8	16.9	16.2	15.6	15.0	14.5	14.1
Wo	2×12	18.7	17.7	17.0	16.3	15.5	14.8	14.1
	3×12	21.5	20.3	19.4	18.7	18.0	17.5	16.9
	3×14	25.0	23.7	22.6	21.9	21.0	20.4	19.8
	4×14	27.5	26.1	25.0	24.0	23.2	22.5	21.8
$\stackrel{1}{6}$	3×16	28.5	27.0	25.9	25.0	24.0	23.2	22.6
	4×16	31.4	29.8	28.6	27.5	26.6	25.7	25.0
	2×8	11.7	11.1	10.6	10.0	9.4	8.9	8.6
O	3×8	13.4	12.7	12.2	11.7	11.3	11.0	10.5
డ	2×10	14.7	13.9	13.2	12.4	11.8	11.2	10.8
	3×10	16.8	15.9	15.2	14.6	14.1	13.7	13.2
웅	2×12	17.6	16.7	15.8	14.9	14.2	13.5	12.9
	3×12	20.1	19.1	18.	17.5	16.9	16.5	15.8
$\stackrel{ }{\square}$	3×14	23.5	22.3	21.3	20.4	19.8	19.2	18.6
	4×14	25.9	24.6	23.6	22.6	21	21.2	20.6
$\stackrel{3}{3}$	3×16	26.8	25.5	24.4	23.4	22.6	21.9	21.0
	4×16	29.6	28.2	26.9	25.8	25.0	24.2	23.5

The maximum spans given in the table for the above loads, are determined by limiting the deflection to q$^{\frac{1}{\delta \sigma}}$ of the span, and the maximum fiber strain to 1250 lbs . per square inch, the lesser value given by either condition being used.

220 THE PASSAIC ROLLING MILL COMPANY.

YELLOW PINE JOISTS.

Maximum Spans in feet, for the following total uniformly distributed loads.

Total Load.	Size of Joists, inches.	Distance from center to center of joists, feet.								
		2	3	4	5	6	7	8	9	10
	4	14.4	12.2	10.6	9.5	8.6	8.0	7.5	7.1	6.7
	6×10	16.5	14.5	12.9	11.5	10.5	9.8	9.2	8.6	8.2
	8×10	18.2	15.9	14.4	13.3	12.2	11.3	10.5	9.9	9.4
	10×10	19.6	17.1	15.6	14.4	13.6	12.6	11.8	11.1	10.6
	4×12	$\overline{17.3}$	14.6	12.7	11. $\overline{3}$	$\overline{10.3}$	9.6	9.0	8.4	8.0
	6×121	19.9	17.4	15.5	13.8	12.7	11.7	11.0	10.3	9.8
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$	8×12	21.9	19.1	17.3	16.0	14.6	13.5	12.7	11.9	11.3
	10×12	23.6	20.6	18.6	17.3	16.3	15.1	14.1	13.4	12.7
	12×12	25.0	21.9	19.8	18.4	17.4	16.5	15.5	14.6	13.9
	4×14	20.2	17.1	14.8	$\overline{13.2}$	$\overline{12.1}$	$\overline{11.2}$	10.5	9.9	9.4
	6×142	23.3	20.2	18.2	16.2	14.8	13.7	12.8	12.1	11.5
	8×142	25.6	22.2	20.2	18.7	17.1	15.8	14.8	14.0	13.2
	10×14	27.6	24.0	21.7	20.2	19.0	17.7	16.5	15.6	14.8
$\stackrel{0}{0}$	12×14	29.2	25.5	23.1	$\underline{21.5}$	20.3	19.3	18.1	17.1	16.2
$\stackrel{\sim}{\sim}$	4×16	23.2	19.5	16.9	$\overline{15.1}$	$\overline{13.8}$	$\overline{12.7}$	11.9	11.3	10.7
	6×162	26.6	23.2	20.6	18.4	16.8	15.6	14.6	13.8	13.0
	8×16	9.2	25.4	23.1	21.3	19.5	18.0	16.9	15.9	15.1
	10×163	31.4	27.4	24.8	23.1	21.8	20.1	18.8	17.8	16.9
	12×16	33	29.2	26.4	24.6	23.2	22.0	20.6	19.5	18.5
$\begin{aligned} & \dot{\circ} \\ & 0 \\ & \hline 1 \end{aligned}$	$4 \times$		10.3	8.9	8.0	7.3	6.7	6.3	5.9	5.6
	6×101	14.8	12.6	10.9	9.8	8.9	8.2	7.7	7.3	6.9
	8×10	16.3	14.2	12.6	11.3	10.3	9.5	8.9	8.4	8.0
	10×10	17.5	15.3	13.9	12.6	11.5	10.6	10.0	9.4	8.9
	4×12	$\overline{15.1}$	12.3	10.7	9.6	8.7	8.1	7.6	7.1	6.8
	6×12	17.8	15.1	13.1	11.7	10.7	9.9	9.3	8.7	8.3
$\stackrel{\rightharpoonup}{0}$	8×1219	19.6	17.1	15.1	13.5	12.3	11.4	10.7	10.1	9.6
	10×12	21.0	18.4	16.6	15.1	13.8	12.8	11.9	11.3	10.7
-	12×12	22.4	19.5	17.7	16.5	15.1	14.0	$\underline{13.1}$	12.3	11.7
発	4×14	$\overline{17.7}$	14.4	12.5	11.2	$\overline{10.2}$	9.4	8.9	8.4	7.9
\%	6×14	20.8	17.7	15.3	13.7	12.5	11.5	10.8	10.2	9.7
	8×14	22.8	19.9	17.7	15.8	14.4	13.3	12.5	11.8	11.2
\sim	10×14	24.5	21.4	19.4	17.6	16.1	14.9	13.9	13.2	12.4
$\stackrel{\square}{\square}$	12×14	26.2	22.9	$\underline{20.7}$	19.3	17.7	16.3	15.3	14.4	13.7
	4×16	20.1	16.4	14.2	12.7	11.6	10.7	$\overline{10.1}$	9.5	9.0
	6×16	23.7	20.1	17.5	15.6	14.3	13.2	12.3	11.6	11.0
	8×16	2	22.8	20.1	18.0	16.4	15.2	14.2	13.4	12.7
	10×16	28.	24.5	22.2	20.1	18.4	17.0	15.9	15.0	14.2
	12×16	29.9	26.	23.7	22.0	20.2	18.6	17.4	16.5	15.6

The maximum spans given in the table for the above loads are determined by limiting the deflection to $\frac{1}{400}$ of the span, and the maximum fiber strain to 1250 lbs. per square inch, the lesser value given by either condition being used.

SAFE LOADS FOR SEASONED RECTANGULAR TIMBER POSTS,

Calculated from the following formulæ for the safe loads, in lbs. per square inch, on square-ended posts.

White Pine and Spruce.

These formulæ are deduced from the latest tests of timber posts, and give safe loads of one-fourth the ultimate strength for short posts, decreasing to one-fifth the ultimate for long posts.

Ratio of Length to Least Side, \boldsymbol{l}	Safe Loads, in lbs. per square inch of Section.		
\boldsymbol{d}	Southern Yellow Pine.	White Oak.	White Pine and Spruce.
12	1000	820	710
14	960	790	680
16	910	750	650
18	870	710	620
20	830	680	590
22	780	640	560
24	740	610	530
26	700	570	500
28	660	540	470
30	620	510	440
32	580	480	
34	550	450	410
36	520	420	390
38	490	400	370
40	460	380	350

$l=$ length of post, in inches.
$d=$ width of smallest side, in inches.

SAFE LOADS FOR

 SQUARE TLMBER COLUMNS,In tons of 2000 lbs .

$\begin{gathered} \text { Kind } \\ \text { of } \\ \text { Timber. } \end{gathered}$	Unsupported length in ft .	Size of Column, in inches.						
		6×6	8×8	9×9	10×10	12×12	14×14	16×16
	8	$\begin{aligned} & 12.8 \\ & 11.7 \end{aligned}$	22.7	29.6				
	10	10.6	21.3	28.0	35.5			
	12	9.54	19.8	26.3	33.7	51.1		
	14	8.46	18.4	24.7	31.9	49.0	69.6	
	16	7.38	17.0	23.1	30.1	46.8	67.0	91.0
	18		15.5	21.5	28.3	44.7	64.5	88.0
	20		14.1	19.8	26.5	42.5	62.0	85.2
	22			18.2	24.7	40.3	59.5	82.3
	24				22.9	38.2	57.0	79.4
	6	14.8						
	8	13.5	26.2	34.0				
	10	12.2	24.6	32.4	41.0			
	12	11.0	22.7	30.4	39.1	59.1		
	14	9.73	21.1	28.4	36.7	56.9	80.4	
	16	8.64	19.5	26.5	34.6	54.0	77.8	105
	18		17.8	24.7	32.4	51.1	74.5	102
	20		16.3	22.7	30.5	49.0	71.3	98.5
	22			21.1	28.2	46.1	68.3	94.7
	24				26.4	43.9	65.5	90.9
	8	18.0						
	8	16.4	32.0	41.6				
	10	14.9	29.9	39.4	50.0			
	12	13.3	27.8	36.9	47.6	72.0		
	14	11.9	25.8	34.7	44.7	69.1	98.0	132
	16	10.4	23.7	32.3	42.3	65.5	94.6	128
	18		21.8	30.0	39.5	62.6	90.7	124
	20		19.8	27.8	37.0	59.8	86.9	120
	22			25.7	34.6	56.2	83.6	115
	24				32.2	53.3	80.0	111

$$
\text { Safe load in pounds per square inch }=\frac{\mathrm{C}}{1+\frac{l^{2}}{1100 d^{2}}}
$$

Where $l=$ length of column, in inches, and $d=$ width of side, in inches. For White Pine or Spruce, $\mathrm{C}=800$; for White Oak, $\mathrm{C}=925$;

ROOFS.

The types of roof trusses generally used for spans from 30 ft . to 100 ft . are shown on pages 226 and 227 . The King and Queen truss, Fig. I, is the type usually employed when the construction is a combination of wood and iron; the rafters, diagonal struts and bottom chord being of wood and the verticals of iron or steel rods. This type is sometimes used when the entire construction is to be of steel, though it is not as economical of material as the Belgian or Fink type of trusses, Figs. 2, 3 and 4, which are the most commonly used for steel roofs over mills, shops, warehouses, etc., for spans up to 100 ft . The lower chord is usually horizontal, though for some special reason it may be raised at the center as shown in Figs. 1, 2 and 3 on page 227. This camber of the lower chord materially increases the strains in the truss members, and should therefore, if economy of material is a consideration, be made as small as possible.
Roof trusses are usually made with riveted connections as being the cheapest construction for the usual short spans. A pair of angles may be used for the rafters if the purlins are supported only at the joints, but if the purlins are carried by the rafter at points between the joints, the bending strains produced are usually too great to be sustained by a rafter of this cross section, in which case, the rafter may consist of a pair of angles and a vertical web plate, deeper than the angles, forming a built-up \mathbf{T} section. The bottom chord, main struts and tension members are best constructed of a pair of angles, while the secondary struts and tension members may be single angles.
For long spans, or heavy loading, pin connections may be desirable, affording convenience in transportation and economy in erection. The compression members are conveniently made of a pair of channels, latticed, and the tension members of steel eyebars or square rods with loop eyes.

When the purlins rest on the rafter between the panel points, the rafter is subjected to a bending strain which must be considered. If the rafter is continuous over panel points it may be considered as a partially continuous beam, and at the center of span between joints the bending will produce compression in the upper fibers and tension in the lower fibers, while at the joints the bending produces reverse effects. The rafters must be proportioned so that the total compressive strain per square inch, due to direct compression and bending, shall not exceed $1 / 2$ the elastic limit of the material. If the bending moment on the rafter between adjacent panel points be calculated as if for a beam with ends simply supported, the bending moments at the ends and at the
center of the panel for the continuous rafter may be taken as $2 / 3$ of the maximum bending moment for the simple beam.

The slope of the rafter is usually determined by the kind of roof covering used. Slate should not be used on a slope less than I to 3 and preferably I to 2. Gravel should not be used on a slope greater than I to 4 . Corrugated iron if used on a slope less than I to 3 is apt to leak under a driving rain, and when possible the slope should not be less than I to 2 .

ALLOWABLE STRAINS IN STEEL ROOF TRUSSES.

lbs. per sq. in.
Tension (shapes)
15,000
Tension rods and eye-bars. 18,000
Maximum fiber stress on I beams16,000
Combined bending and direct strain. 15,000
Compression. 13,500 - $50 \frac{l}{\mathrm{r}}$
where $l=$ length of member and $\mathrm{r}=$ least radius of gyration of member, both in inches.

APPROXIMATE WEIGHT, PER SQUARE FOOT, OF ROOF COVERINGS, EXCLUSIVE OF STEEL CONSTRUCTION.

The weight of the steel roof construction must be added to the above. For ordinary light roofs, without ceilings, the weight of the steel construction may be taken at 5 lbs . per square foot for spans up to 50 ft ., and I lb. additional for each io ft . increase of span.

It is customary to add 30 lbs . per square foot to the above for wind and snow. No roof should be calculated for a total load less than 40 lbs. per sq. ft .

The total load found as above is to be considered as distributed over the entire truss. It is not necessary to consider the separate effects of wind and snow on spans of less than ioo ft ., but for greater spans separate calculations should be made.

The relation between the velocity and pressure of wind against surfaces at right angles to the direction of the wind is given in the following table, based upon experiments conducted by the U.S. Signal Service, at Mt. Washington.

The components of pressure caused by wind acting upon inclined surfaces are given in the following table:
$\mathrm{A}=$ Angle of surface of roof with direction of wind.
$F=$ Force of wind, in lbs. per square foot.
$\mathrm{N}=$ Pressure normal to surface of roof.
$\mathrm{V}=$ Pressure perpendicular to direction of wind.
$\mathrm{H}=$ Pressure parallel to direction of wind.

Angle of Roof.	5°	10°	20°	30°	40°	50°	60°	70°	80°	90°
$\mathrm{N}=\mathrm{F} \times$.125	.24	.45	.66	.83	.95	1.00	1.02	1.01	1.00
$\mathrm{~V}=\mathrm{F} \times$.122	.24	.42	.57	.64	.61	.50	.35	.17	.00
$\mathrm{H}=\mathrm{F} \times$.01	.04	.15	.33	.53	.73	.85	.96	.99	1.00

ROOF TRUSSES

LIGHT LINES INDICATE TENSION MEMBERS HEAVY LINES INDICATE COMPRESSION MEMBERS

CAMBERED ROOF TRUSSES

LIGHT LINES INDICATE TENSION MEMBERS HEAVY LINES INDICATE COMPRESSION MEMBERS

FIG. 1.

FIG. 2.

MAXIMUM STRAINS IN KING AND QUEEN ROOF TRUSSES.

Fig. I, Page 226.
To find the maximum strains in any member of these trusses, multiply the co-efficients given here below.
I. For rafters, by the panel load $\ldots \ldots . \times \frac{\text { length of rafter }}{\text { depth of truss }}$ 2. For bottom chord, " $\ldots \ldots . \times \frac{1 / 2 \text { span of truss }}{\text { depth of truss }}$
3. For inclined struts,
$\times \frac{\text { length of strut }}{\text { length of rod }}$
4. For vertical rod,
" \times I

	Member.	$\begin{gathered} 14 \\ \text { Panel. } \end{gathered}$	$\begin{gathered} 12 \\ \text { Panel. } \end{gathered}$	$\begin{gathered} 10 \\ \text { Panel. } \end{gathered}$	$\stackrel{8}{\text { Panel. }}$	$\stackrel{6}{\text { Panel. }}$	$\stackrel{4}{\text { Panel. }}$
Bottom Chords.	02	6.5	5.5	4.5	3.5	2.5	1.5
	23	6.	5.	4.	3.	2.	
	34	5.5	4.5	3.5	2.5		
	45	5.	4.	3.			
	56	4.5	3.5				
	67	4.					
Rafters.	01^{\prime}	6.5	5.5	4.5	3.5	2.5	1.5
	$1^{\prime} 2^{\prime}$	6.	5.	4.	3.	2.	1.
	$2^{\prime} 3^{\prime}$	5.5	4.5	3.5	2.5	1.5	
	$3^{\prime} 4^{\prime}$	5.	4.	3.	2.		
	$4^{\prime} 5^{\prime}$	4.5	3.5	2.5			
	$5^{\prime} 6^{\prime} 6^{\prime}$	4.	3.				
Inclined Struts.							
	$1^{\prime} 2$	0.5	0.5	0.5	0.5	0.5	0.5
	$2^{\prime} 3$	1.0	1.0	1.0	1.0	1.0	
	$3{ }^{\prime}$	1.5	1.5	1.5	1.5		
	$4^{\prime} 5$	2.0	2.0	2.0			
	$5^{\prime} 6$	2.5	2.5				
	$6^{\prime} 7$	3.0					
Vertical Rods.	11^{\prime}	0	0	0	0	0	0
	22^{\prime}	0.5	0.5	0.5	0.5	0.5	1.
	33^{\prime}	1.0	1.0	1.0	1.0	2.	
	44^{\prime}	1.5	1.5	1.5	3.		
	55^{\prime}	2.0	2.0	4.			
	66^{\prime}	2.5	5.				
	77^{\prime}	6.					

MAXIMUM STRAINS IN BELGIAN OR FINK ROOF TRUSSES.

Figs. 2, 3 and 4, Page 226.

Ratio of depth to length of span.			$\underset{\frac{1}{3}}{0.333}$	$\frac{0.289}{\frac{1}{4.464}}$	$\underset{\frac{1}{4}}{0.250}$	$\underset{\frac{1}{5}}{0.200}$	$\underset{\substack{\frac{1}{6}}}{0.167}$	$0_{\frac{1}{8}}^{0.125}$
Inclinat'n of rafters.			$33^{\circ} 41^{\prime}$	30°	$26^{\circ} 34^{\prime}$	$21^{\circ} 48$	$18^{\circ} 26$	$14^{\circ} 2$
	Bottom chord.	01	5.25	6.06	7.00	8.75	10.50	14.00
		12	4.50	5.19	6.00	7.50	9.00	12.00
		22	3.00	3.46	4.00	5.00	6.00	8.00
	Thord.	01^{\prime}	6.30	7.00	7.83	9.42	11.08	14.44
		$1^{\prime} \mathbf{2}^{\prime}$	5.75	6.50	7.38	9.05	10.76	14.20
		23^{\prime}	5.20	6.00	6.93	8.68	10.45	13.95
		$3^{\prime} 4^{\prime}$	4.65	5.50	6.48	8.31	10.13	13.71
		23	1.50	1.73	2.00	2.50	3.00	4.00
	braces.	$\left\lvert\, \begin{gathered} 34^{\prime} \\ 12^{\prime} \& 32^{\prime} \end{gathered}\right.$	$\begin{aligned} & 2.25 \\ & 0.75 \end{aligned}$	2.60 0.87	3.00 1.00	3.75 1.25	4.50 1.50	6.00 2.00
	Struts.	11^{\prime} \& 33	0.83	0.87	0.89	0.93	0.95	0.97
		22^{\prime}	1.66	1.73	1.78	1.86	1.90	1.94
	Botto	01	3.75	4.33	5.00	6.25	7.50	10.00
	chord.	11	2.25	2.60	3.00	3.75	4.50	6.00
	Top chord.	01^{\prime}	4.51	5.00	5.59	6.74	7.91	10.31
		${ }^{1}{ }^{\prime} \mathbf{2}^{\prime}$	3.53	4.00	4.55	5.59	6.65	8.77
		23^{\prime}	3.40	4.00	4.70	6.00	7.29	9.83
	Tension brace.	13^{\prime}	1.50	1.73	2.00	2.50	3.00	4.00
	Struts.	11^{\prime} \& 12	. 93	1.00	1.07	1.22	1.34	1.62
	Bottom	01	2.25	2.60	3.00	3.75	4.50	6.00
	chord.	11	1.50	1.7	2.00	2	3.00	4.00
	Top	01^{\prime}	2.70	3.00	3.35	4.04	4.75	6.19
	chord.	$1^{\prime} 2^{\prime}$	2.15	2.50	2.90	3.67	4.44	5.95
	Rod.	12	0.75	0.87	1.00	1.25	1.50	2.00
	Strut.	11^{\prime}	0.83	0.87	0.89	0.93	0.95	0.97

To find the maximum strain in any member of these trusses, multiply the coefficients given in the table above by the panel load.

MAXIMUM STRAINS IN CAMBERED BELGIAN OR FINK ROOF TRUSSES.
 CAMBER $=\frac{1}{6}$ TOTAL HEIGHT.

Figs. 1, 2 and 3, Page 227.
To find the maximum strain in any member of these trusses, multiply the coefficients given in the table below, by the panel load.

Ratio of depth to length of span.			$\underset{\frac{1}{3}}{0.333}$	$\begin{aligned} & 0.289 \\ & \frac{1}{3.464} \end{aligned}$	0.250	$\begin{gathered} 0.200 \\ \frac{1}{5} \end{gathered}$	0.167	0.125
Inclinat'n of rafters.			$33^{\circ} 40^{\prime}$	30°	$26^{\circ} 34^{\prime}$	$21^{\circ} 48^{\prime}$	$18^{\circ} 26^{\prime}$	$14^{\circ} 2^{\prime}$
	Bottom chord.	01 12 22	$\begin{aligned} & 7.17 \\ & 6.15 \\ & 3.60 \\ & \hline \end{aligned}$	8.44 7.23 4.16	$\begin{aligned} & 9.90 \\ & 8.48 \\ & 4.80 \end{aligned}$	12.61 10.81 6.00	15.31 13.12 7.20	20.66 17.71 9.60
	Top	$\begin{aligned} & 01^{\prime} \\ & 1^{\prime} \mathbf{2}^{\prime} \\ & 2^{\prime} 3^{\prime} \\ & 3^{\prime} 4^{\prime} \end{aligned}$	$\begin{aligned} & 8.49 \\ & 7.94 \\ & 7.39 \\ & 6.83 \end{aligned}$	9.63 9.13 8.63 8.13	$\begin{array}{r} 10.96 \\ 10.51 \\ 10.06 \\ 9.61 \end{array}$	$\begin{aligned} & 13.49 \\ & 13.11 \\ & 12.74 \\ & 12.37 \end{aligned}$	$\begin{aligned} & 16.05 \\ & 15.73 \\ & 15.41 \\ & 15.10 \end{aligned}$	$\begin{aligned} & 21.21 \\ & 20.98 \\ & 20.74 \\ & 20.49 \end{aligned}$
	Tension braces.	$\left\|\begin{array}{c} 23 \\ 34^{\prime} \\ 12^{\prime} \& 32^{\prime} \end{array}\right\|$	$\begin{aligned} & 2.87 \\ & 3.89 \\ & 1.02 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.37 \\ & 4.58 \\ & 1.21 \end{aligned}$	$\begin{aligned} & 3.96 \\ & 5.37 \\ & 1.41 \end{aligned}$	$\begin{aligned} & 5.04 \\ & 6.85 \\ & 1.80 \end{aligned}$	$\begin{aligned} & 6.12 \\ & 8.31 \\ & 2.19 \end{aligned}$	$\begin{array}{r} 8.26 \\ 11.21 \\ 2.95 \end{array}$
	Struts.	$\begin{gathered} 11^{\prime} \& 33^{\prime} \\ 22^{\prime} \end{gathered}$	$\begin{aligned} & 0.83 \\ & 1.66 \end{aligned}$	$\begin{aligned} & 0.87 \\ & 1.73 \end{aligned}$	$\begin{aligned} & 0.89 \\ & 1.79 \end{aligned}$	$\begin{aligned} & 0.93 \\ & 1.86 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 1.89 \end{aligned}$	$\begin{aligned} & 0.97 \\ & 1.94 \end{aligned}$
	Bottom chord.	$\begin{aligned} & 01 \\ & 11 \end{aligned}$	5.12 2.70	6.03 3.12	7.07 3.60	9.01 4.50	10.94 5.40	$\begin{array}{r} 14.76 \\ 7.20 \end{array}$
	Top chord.	$\begin{aligned} & 01^{\prime} \\ & 1^{\prime} 2^{\prime} \\ & 2^{\prime} 3^{\prime} \end{aligned}$	$\begin{aligned} & 6.09 \\ & 4.89 \\ & 4.96 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.88 \\ & 5.63 \\ & 5.88 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.83 \\ & 6.48 \\ & 6.93 \end{aligned}$	$\begin{aligned} & 9.64 \\ & 8.10 \\ & 8.89 \\ & \hline \end{aligned}$	11.47 9.72 10.83	$\begin{aligned} & 15.15 \\ & 12.98 \\ & 14.67 \end{aligned}$
	Tie. Struts.	$\begin{gathered} 13^{\prime} \\ 11^{\prime} \& 12^{\prime} \end{gathered}$	$\begin{aligned} & 2.66 \\ & 1.04 \end{aligned}$	$\begin{aligned} & 3.13 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 3.67 \\ & 1.26 \end{aligned}$	4.69 1.49	$\begin{aligned} & 5.69 \\ & 1.71 \end{aligned}$	$\begin{aligned} & 7.67 \\ & 2.17 \end{aligned}$
$\text { 4-panel truss, Fig. } 1$	Bottom chord.	$\begin{aligned} & 01 \\ & 11 \end{aligned}$	3.07 1.80	3.62 2.08	4.24 2.40	5.40 3.00	6.56 3.60	8.85 4.80
	Top chord.	$\begin{aligned} & 01^{\prime} \\ & 1^{\prime} \mathbf{2}^{\prime} \end{aligned}$	$\begin{aligned} & 3.64 \\ & 3.09 \end{aligned}$	4.13 3.63	4.70 4.25	5.78 5.41	6.88 6.56	$\begin{aligned} & 9.09 \\ & 8.85 \end{aligned}$
	Tie. Strut.	$\begin{aligned} & 12^{\prime} \\ & 11^{\prime} \end{aligned}$	$\begin{aligned} & 1.43 \\ & 0.83 \end{aligned}$	$\begin{aligned} & 1.69 \\ & 0.87 \end{aligned}$	$\begin{aligned} & 1.98 \\ & 0.89 \end{aligned}$	2.52 0.93	$\begin{aligned} & 3.06 \\ & 0.95 \end{aligned}$	4.11 0.97

MAXIMUM STRAINS

IN TRUSSES WITH PARALLEL CHORDS.

The maximum strains in the different members of ordinary trusses with parallel chords can be determined by the use of the following tables, if the dead and moving loads are given. In many cases it will be sufficient to consider only a uniform dead load and a uniform live load. The third column gives the influence of a heavier load in front of a uniform load ; such as a locomotive at the head of a train of cars.

The panel points are numbered, beginning with o at the abutment, those of the bottom chord with plain numbers and those of the top chord with a prime (') so as to indicate the position of the different members without it being necessary to refer to the diagram.

In calculating these tables, the loads were supposed to be concentrated at the lower chord joints for through-bridges, and at the upper chord joints for deck-bridges. In throughbridges the strain, obtained in this manner, for the web members under compression should be increased by the weight of a panel of top chord and top lateral bracing.

Highway bridges are calculated for a live load of roo lbs. per sq. ft . of floor for all spans up to 100 ft ., and 80 lbs . for spans over 200 ft ., due provision being made for concentrated loads, such as heavy steam road rollers or electric cars. The dead weight of ordinary highway bridges, exclusive of timber flooring, is given, approximately, by the following formula:

Weight of metal, lbs. per lineal foot of span $=\frac{1}{5} b l+\mathrm{r} 50$ where $l=$ length of bridge, and $b=$ width of floor, both in feet.

Railroad bridges are calculated for concentrated loads typical of the actual load of two locomotives at the head of a train of cars on each track. The following diagram of such a loading is fromTheodore Cooper's 1896 Specification for Railroad Bridges, and represents two 106.5 ton locomotives followed by a uniform load of $3,000 \mathrm{lbs}$. per lineal ft . on one track. For short spans an alternate loading of $100,000 \mathrm{lbs}$., equally distributed on two driving wheel axles spaced $7 \frac{1}{2} \mathrm{ft}$. centers, is also specified.

Heavier or lighter locomotives of the same type as that shown by the diagram will produce strains in proportion to their weights.

This loading may be represented by an equivalent uniformi load; or, it may also be represented by a uniform load combined with an engine excess. The representation by an equivalent load is not applicable to the calculation of trusses with more than one system of web bracing. Such trusses may be calculated by a uniform load combined with an engine excess. Either method is only an approximation and may give re. sults materially in error. The following table gives the equivalent loads by either method for the above loading for a single track.

$\begin{aligned} & \text { Span } \\ & \text { int } \\ & \text { feet. } \end{aligned}$	Equivalent Uniform Load, lbs. per foot of Track.		Uniform Load, with Engine Excess.	
	Moments.	End Shears.	Uniform Load lbs. per foot of Track.	$\begin{gathered} \text { Engine Excess, } \\ \mathrm{lb} . \end{gathered}$
10	10,000	12,500	3,400	33,000
15	7,500	10,000	,	32,000
20	6,600	8,100	"	32,000
25	5,900	6,800	"	31,000
30	5,500	6,300	"	30,000
40	4,900	5,600	"	30,000
50	4,600	5,200	"	30,000
75	4,100	4,700	"	30,000
100	4,000	4,500	"	30,000
150	3,800	4,200	"	30,000
200	3,700	3,900	"	30,000
300	3,500	3,700	"	30,000

The weight of track material (ties, rails and guard-rails) is about 400 lbs . per ft . of single track. The weights of railroad bridges, per lineal ft . of span, exclusive of track material, designed for the above loading, are given, approximately, by the following formulae, where $l=$ length of span in ft .

Single track,	leck plate girder,	$9 l+$
	lattice	$8 l+100$
" "	through pin trus	$6 l+400$
		$6 l+300$
uble track	, through pin trus	$12 l+1000$
	deck	$12 l+800$

For other loadings these formulae will vary about $\frac{2}{3}$ of one per cent. for each one per cent. variation of live load.

EXAMPLE OF APPLICATION OF TABLE.

WARREN TRUSS, DECK BRIDGE WITH INTERMEDIATE POSTS, FOR SINGLE TRACK RAILROAD.

Span, 150^{\prime}; Depth, 20^{\prime}.
Number of panels Io, of 15^{\prime} each.
Dead load, $\mathrm{I}, 60 \mathrm{lbs}$. per lin. ft. of bridge.
Live load, $3,400 \mathrm{lbs}$. per lin. ft. of bridge.
$D=$ dead load $=\mathbf{1 2}, 000 \mathrm{lbs}$. per panel for I truss.
$\mathrm{L}=$ live load $=25,500$ " " " " I "
$\mathrm{E}=$ excess of locomotive weight $=15,000 \mathrm{lbs}$. for I truss.

$$
\begin{aligned}
& l=\frac{25,500}{10}=2,550 \\
& e=\frac{15,000}{10}=1,500
\end{aligned}
$$

Length of diagonal members, 25 ft .

$$
\text { Sec. }=\frac{25}{20}=1.25 \quad \text { Tang. }=\frac{15}{20}=0.75
$$

Strain in middle piece of bottom chord 4-6,

$$
\begin{aligned}
12.5(\mathrm{D}+\mathrm{L}) & =468,750 \\
25 \mathrm{e} & =\frac{37,500}{506,250} \times \text { tang. }=379,687 .
\end{aligned}
$$

Compressive strain in brace, 45^{\prime}.

$$
\begin{aligned}
0.5 \mathrm{D} & =6,000 \\
15 \cdot l & =38,250 \\
5 \cdot \quad e & =\frac{7,500}{51,750} \times \text { sec. }=64,687 .
\end{aligned}
$$

Tensile strain in brace, $5^{\prime} 6$.

$$
\begin{aligned}
-0.5 \mathrm{D} & =-6,000 \\
\text { 10. } l & =25,500 \\
4 . e & =\frac{6,000}{25,500} \times \mathrm{sec} .=31,875 .
\end{aligned}
$$

It will be observed that, by beginning with o at the lefthand abutment, the compression member 45^{\prime} becomes the tension member $5^{\prime} 6$, and the maximum strains change from 64,687 compression to 31,875 tension. The strains in the other members are found in a similar manner.

The load on any of the intermediate posts is found as follows:

$$
\begin{aligned}
15 \mathrm{ft} . \times 1,700 & =25,500 \\
& =\frac{16,000}{41,500}
\end{aligned}
$$

TRUSSES WITH PARALLEL CHORDS

FIG. 3.

FIG. 4.

FIG. 5.

FIG.G. $12^{\prime} 11^{\prime} 10^{\prime} 9^{\prime} 8^{\prime} \quad 7^{\prime} 6^{\prime} \quad 5^{\prime} \quad 4^{\prime} \quad 3^{\prime} \quad 2^{\prime} \quad y^{\prime} 0^{\prime}$

THE PASSAIC ROLLING MILL COMPAN゙Y。 235

MAXIMUM STRAINS PRODUCED BY DEAD AND LIVE LOADS IN

$\stackrel{\sim}{\square}$		
$\begin{aligned} & \text { 凹 } \\ & \text { デ } \\ & \text { ت1 } \\ & \text { H } \end{aligned}$		
in		
$\begin{gathered} \text { ভ } \\ \underset{\sim}{U} \\ \underset{\sim}{N} \end{gathered}$		
$\begin{aligned} & \stackrel{0}{\otimes} \\ & \underset{\sim}{\tilde{N}} \\ & \text { ~ } \\ & \dot{H} \end{aligned}$		$\frac{\pi}{3}=$
$\begin{gathered} \stackrel{n}{U} \\ \underset{\sim}{U} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{gathered}$		
		$\begin{array}{r}0 \\ \text { 플 } \\ \text { 플 } \\ \hline\end{array}$

THE PASSAIC ROLLING MILL COMPANY. 237

z

238 THE PASSAIC ROLLING MILL COMPANY.

亩			いot
		－T－	$\frac{0 n}{7}$
		\sim^{-1}	
	\mathfrak{c}	－2007	$\bigcirc 0000$
		－0オ－	
包 尔			
		－ncos＝	
¢ 2		－vade	
台		－20TuT	
		－0ncom－	
¢ ${ }_{\text {¢ }}$		$\mathrm{AROO-}$	
		－$=0101020 \mathrm{H}$	－च8になった\％
奈起		－\％¢ ¢ ¢－	+oisinooso
－1		－9970ヶ以のन	
		－9\％呂気のサन	
者 备			
2 年			
F			
			－
¢			
尔			
2			
首			

THE PASSAIC ROLLING MILL COMPANY'S STANDARD TURNTABLES.

The table is entirely center bearing, and rests on hardened steel discs, which offer very little resis,ance to turning, and at the same time are of sufficiently large diameter to give ample bearing surface to maintain them in good working order, and prevent abrasion by excessive pressure. The discs are six inches irs diameter for the smaller tables, and eight inches for the larger sizes. The tables are suspended from the saddle and center pin by two bolts of re-rolled iron. Two bolts are used, in preference to four, to avoid the uneven distribution of the load produced by the tightening of the bolts, which is liable to occur when more than two are used. The vertical adjustment of the table is easily made with the suspending bolts, and without the use of packing plates or other devices. The flanges are made of six inch angle irons, extending the full length of the table without splices, and re-enforced at the center with cover plates. The sections of the flanges are proportioned with due regard to the effect of the reversal of strains at any point of either flange due to the shifting position of the locomotive, and the stresses are kept low to avoid excessive deflection at the ends of the table when loaded. The girders are connected to each other with rigid angle iron bracing effectively secured to the flanges, and with six transverse frames, also of angle iron. The center and saddle castings and the end bearing wheels are open hearth steel castings. No cast iron is used in the construction.

The 55 ft . 60 ft . and 65 ft . turntables are made in five standard sizes.

Pattern A, for turning	75	ton locomotives.			
".	B, "	"	90	".	".
$"$	C, "	"	$1061 / 2$	$"$	$"$
$"$	D, "	"	124	".	$"$
$"$	E, "	$"$	142	$"$	$"$

Where shipment can be made by rail, the tables are loaded on cars, complete, ready to set in the pit. Dimensions for building the pit, and instructions for setting the table accompany each contract.

When the pits are already built the tables can be made to fit them at a slight additional cost.

DIMENSIONS OF PASSAIC STANDARD TURNTABLES.

Diar	$40^{\prime} 0$	$45^{\prime} 0^{\prime \prime}$	$50^{\prime} 0^{\prime \prime}$		'60' ${ }^{\prime \prime}$	$0^{\prime \prime}$
Length of Girder, out to out	$39^{\prime} 4^{\prime \prime}$	$44^{\prime} 4^{\prime \prime}$	$49^{\prime} 6^{\prime}$	54^{\prime}	59'6 ${ }^{\prime \prime}$	64
Diameter of Circular Tracks, center to center of Rail.	$36^{\prime} 0^{\prime \prime}$	$41^{\prime} 0^{\prime \prime}$	$46^{\prime} 0$	$51^{\prime} 0^{\prime \prime}$	56	$61^{\prime} 0^{\prime \prime}$
Depth from top of Rail on Table to top of Center Stone	$5^{\prime} 0^{\prime \prime}$	$5^{\prime} 0^{\prime \prime}$	$5^{\prime} 6^{\prime \prime}$	$5^{\prime} 6^{\prime \prime}$	$5^{\prime} 6^{\prime \prime}$	$5^{\prime} 9^{\prime \prime}$
Depth from top of Rail on Table to top of Rail of Circular Track	$3^{\prime} 4^{\prime \prime}$	$3^{\prime} 4^{\prime \prime}$	$3^{\prime} 10^{\prime \prime}$	$3^{\prime} 10^{\prime \prime}$	$3^{\prime} 10^{\prime \prime}$	$3^{\prime} 10$
Depth from top of Rail on Table to top of Rail of Circular Track, shallow Pit...................	$2^{\prime} 0^{\prime \prime}$	$2^{\prime} 0^{\prime \prime}$	$2^{\prime} 6^{\prime \prime}$	$2^{\prime} 6^{\prime \prime}$	$2^{\prime} 6^{\prime \prime}$	${ }^{\prime \prime}$

PASSAIC STANDARD TURNTABLES

$0.2 \quad 4 \quad 3 \quad 10$ EEET.

SPECIFICATIONS FOR STRUCTURAL STEEL.

Condensed from the Standard Specifications of the Association of American Steel Manufacturers.

PROCESS OF MANUFACTURE.

(1). Steel shall be made by either the Open Hearth or Bessemer process.

TEST PIECES.

(2). All tests and inspections shall be made at place of manufacture prior to shipment.
(3). The tensile strength, limit of elasticity and ductility shall be determined from a standard test piece, planed or turned parallel throughout its entire length, cut from the finished material. The clongation shall be measured on an original length of 8 inches, except when the thickness of the finished material is $\frac{5}{18}$ inch or less, in which case the elongation shall be measured in a length equal to sixteen times the thickness; and except in rounds of $\frac{5}{8}$ inch or less in diameter, in which case the elongation shall be measured in a length equal to eight times the diameter of section tested. Two test pieces shall be taken from each heat of finished material, one for tension and one for bending.
(4). Every finished piece of steel shall be stamped with the heat number. Steel for pins shall have the heat numbers stamped on the ends. Rivet and lacing steel, and small pieces for tie plates and stiffeners, may be shipped in bundles securely wired together with the heat number on a metal tag attached.

FINISH.

(5). Finished bars must be free from injurious seams, flaws or cracks, and have a workmanlike finish.

CHEMICAL PROPERTIES.

(6). Steel for buildings, train sheds, highway bridges and similar structures shall not contain more than o.Io per cent. of phosphorus.
(7). Steel for railway bridges shall not contain more than 0.08 per cent. of phosphorus.

PHYSICAL PROPERTIES.

(8). Structural steel shall be of three grades: Rivet Steel, Soft Steel, and Medium Steel.

RIVET STEEL.

(9). Rivet steel shall have an ultimate strength of 48,000 to 58,000 pounds per square inch, an elastic limit of not less than one-half the ultimate strength, and an elongation of 26 per cent., and shall bend, 180 degrees flat on itself, without fracture on the outside of the bent portion.

SOFT STEEL.

(ro). Soft steel shall have an ultimate strength of 52,000 to 62,000 pounds per square inch, an elastic limit of not less than one-half the ultimate strength, and an elongation of 25 per cent., and shall bend I8o degrees, flat on itself, without fracture on the outside of the bent portion.

MEDIUM STEEL.

(iI). Medium steel shall have an ultimate strength of 60,000 to 70,000 pounds per square inch, an elastic limit of not less than one-half the ultimate strength, and an elongation of 22 per cent., and shall bend 180 degrees, around a curve having a diameter equal to the thickness of the piece tested, without fracture on the outside of the bent portion.

PIN STEEL.

(12). Pins made from either of the above mentioned grades of steel shall, on specimen test pieces cut at a depth of one inch from the surface of finished material, fill the physical requirements of the grade of steel from which they are rolled for ultimate strength, elastic limit and bending, but the required percentage of elongation shall be decreased 5 per cent.

EYE-BAR STEEL.

(13). Eye-bar material $\mathrm{I} \frac{1}{2}$ inches and less in thickness, made of cither of the above mentioned grades of steel, shall, on test pieces cut from finished material, fill the requirements of the grade of steel from which it is rolled. For thicknesses greater than $I_{\frac{1}{2}}$ inches, there will be allowed a reduction in percentage of elongation of one per cent. for each $\frac{1}{8}$ of an inch increase in thickness, to a minimum of 20 per cent. for medium steel and 22 per cent. for soft steel.

FULL SIZE TEST OF STEEL EYE-BARS.

(I4). Full size tests of steel eye-bars shall be required to show not less than io per cent. elongation in the body of the bar, and a tensile strength not more than 5,000 pounds below the minimum tensile strength required in specimen tests of the grade of steel from which the bars are rolled. The bars will be required to break in the body; should a bar break in the head, but develop Io per cent. elongation and the ultimate strength specified, it shall not be cause for rejection, provided not more than onethird of the total number of bars tested break in the head.

VARIATION IN WEIGIT.

(I5). A variation in cross-section or weight of more than $2 \frac{1}{2}$ per cent. from that specified will be sufficient cause for rejection, except in the case of sheared plates.

When sheared plates are ordered by weight, the permissible variation shall not be more than $2 \frac{1}{2}$ per cent. from that specified, except for plates $\frac{1}{4}^{\prime \prime}$ to $\frac{5^{\prime}}{16}{ }^{\prime \prime}$ thick (Io.2 to 12.75 lbs . per square foot), which, when ordered to weight, shall not average a variation greater than 5 per cent. above or below the theoretical weight for plates over $75^{\prime \prime}$ wide.

When sheared plates are ordered to gauge, the overweight shall not exceed the percentages given in the following table : -
PERCENTAGES OF ALLOWABLE OVERWEIGHTS
FOR SHEARED PLATES WHEN
ORDERED TO GAUGE.

Thickness of Plate.	Width of Plate.		
	Up to 75 inches.	75 to 100 inches.	Over 100 inches.
$\frac{1}{4}$ inch.	10	14	18
$\frac{5}{16}$ "	8	12	16
$\frac{3}{8} \quad 1$	7	10	13
$\frac{7}{16}$ "	6	8	10
$\frac{1}{2}$ "	5	7	9
$\frac{9}{16}$	41 ${ }^{2}$	$6 \frac{1}{2}$	$8 \frac{1}{2}$
$\frac{5}{8}{ }^{\prime}$	4	6	8
Over $\frac{5}{8} \mathrm{inch}$.	$3 \frac{1}{2}$	5	$6 \frac{1}{2}$

CORRUGATED IRON.

Corrugated iron is largely used for roofing and siding of buildings and can be applied directly upon steel purlins or studding by means of clips of hoop iron, placed not more than $12^{\prime \prime}$ apart, which encircle the purlin or stud. The projecting edges at the gables and eaves must be secured to prevent the sheets being loosened or folded up by the wind.

The usual dimensions of corrugated iron are given in the subjoined table. The $2 \frac{1}{2}$ inch corrugation is the one generally employed for roofing and siding, and the regular lengths of sheets are $6,7,8,9$ and io ft .

DIMENSIONS OF SHEETS AND CORRUGATIONS.

Width of Corrugation.	Depth of Corrugation	No. of Corrugations to the Sheet	Cov, width after lapping one Corrugation.	Width of Sheet after Corrugation.	Length of longest Sheets.
$\begin{aligned} & 2 \frac{1}{2} \text { inch. } \\ & 1 \frac{1}{4} \\ & \frac{3}{3} \\ & \frac{3}{4} \end{aligned}$	$\begin{aligned} & \frac{5}{8} \text { inch. } \\ & \frac{1}{2} \text { " } \\ & \frac{1}{4} \text { " } \end{aligned}$	$\begin{aligned} & 10 \\ & 192 \\ & 34 \frac{1}{2} \end{aligned}$	24 inch. 24 " 25 "	$\begin{aligned} & 26 \text { inch. } \\ & 26 " " \\ & 26 " " \end{aligned}$	10 ft. 8 ft . 8 ft

Roofing is measured by the square, equal to 100 sq . ft . of finished roofing in place. The corrugated sheets are usually laid with one corrugation lap on the sides and an end lap of $6^{\prime \prime}$ for roofing and $2^{\prime \prime}$ for siding.

NUMBER OF SQUARE FEET OF $2 \frac{1}{2}$ " CORRUGATED IRON REQUIRED TO LAY ONE SQUARE. Side Lap, One Corrugation.

Length Sheet, Feet.	Length of End Lap.					
	1 inch.	2 inch.	3 inch.	4 inch.	5 inch.	6 inch.
5	110	112	114	116	118	120
6	110	111	113	115	117	118
7	110	110	112	114	115	117
8	109	110	112	113	114	115
9	109	110	112	113	114	115
10	108	109	110	111	112	113

CORRUGATED IRON (Continued).

The maximum spans for roofing and siding are as follows: No. 16. No. 18. No. 20. No. 22. No. 24. No. 26. No. 28. Roofing, $\quad 5^{\prime} 9^{\prime \prime} \quad 5^{\prime} 0^{\prime \prime} \quad 4^{\prime} 3^{\prime \prime} \quad 4^{\prime} 0^{\prime \prime} \quad 3^{\prime} 6^{\prime \prime} \quad 3^{\prime} 0^{\prime \prime} 2^{\prime} 9^{\prime \prime}$ Siding, $\quad 7^{\prime} 0^{\prime \prime} \quad 6^{\prime} 3^{\prime \prime} 5^{\prime} 3^{\prime \prime} 4^{\prime} 9^{\prime \prime} \quad 4^{\prime} 3^{\prime \prime} \quad 3^{\prime} 9^{\prime \prime} 3^{\prime} 3^{\prime \prime}$ and if used on greater spans the excessive deflection is liable to impair the tightness of the joints.

Numbers 20 and 22 are the gauges most in use for roofs, and number 24 for siding. The sheets may be either painted or galvanized.

The United States standard gauge, adopted by Act of Congress in 1893, is in general use by manufacturers of sheet iron. The following table gives the thickness and weight of corrugated iron in accordance with United States standard gauge.

				Weight per Square of roo Square Feet, when laid, allowing $6^{\prime \prime}$ lap in length, and $2^{1 / 21 \prime}$ or one Corrugatfor sheet lengths of:						
				5	6^{\prime}	$7{ }^{\prime}$	8^{\prime}	9^{\prime}	10^{\prime}	
16		2.50	2.75	331	325	320	318	315	,	2.91
18	. 05	2.00	2.20	264	260	256	254	252	249	2.36
20	. 0375	1.50	1.65	198	195	193	190	189	187	1.82
22	. 0313	1.25	1.38	166	163	161	159	158	156	1.54
24	. 025	1.00	1.11	134	131	130	128	127	126	1.27
26	. 0188	. 75	. 84	101	100	99	98	96	95	. 99
28	. 0156	. 63	. 69	83	82	81	80	79	78	86

TRANSVERSE STRENGTH OF CORRUGATED IRON.

The transverse strength of corrugated iron may be calculated in the following manner :
$l=$ unsupported length of sheet, in inches.
$\mathrm{t}=$ thickness of sheet, in inches.
$\mathrm{b}=$ width of sheet, in inches.
$d=$ depth of corrugation, in inches.
$\mathrm{w}=$ safe uniformly distributed load, in pounds.
Then, $w=\frac{25,000 \mathrm{bt} \mathrm{d}}{l}$

RIVETS AND PINS.

In proportioning riveted work the friction is neglected between the parts connected as it is an uncertain element. The rivets must resist the whole strain which is to be transmitted from one part to the other, and they must be of sufficient size and number to present ample resistance to shearing, and afford sufficient bearing area so as not to cause a crushing of the metal at the rivet holes. It is, therefore, always necessary to calculate rivet connections for shear as well as for bearing. The usual strains, lbs. per square inch, allowable on riveted work are as follows: -
Rivets. Shearing. Bearing.
Iron rivets, railroad bridges, $\quad 6,000 \quad 12,000$
Iron rivets, highway bridges and buildings, 7,500 15,000 Steel rivets, railroad bridges, $\quad 7,500 \quad 15,000$ Steel rivets, highway bridges and buildings, $9,000 \quad 18,000$

The following tables give the shearing and bearing values of rivets, of different diameters, for the above strains. Single shear occurs when a single shearing across the body of the rivet suffices to produce separation of the parts connected; as, for instance, when a thick plate is connected with another single thick plate by means of a rivet, the connection can fail only by a single shearing of the body of the rivet. If, however, the plates are thin they may not offer sufficient bearing against the rivet to prevent rupture by the rivet bodily crushing the plates ; the latter condition is determined by the bearing value of the rivet upon the plates. If a $\frac{3}{4}$ " diameter rivet is used, and the plates are only $\frac{114}{4}$ thick, by reference to the tables, it will be found that the bearing value of the rivet on a $\frac{1}{4}$ " plate is less than its value in single shear, and the bearing value of the rivet determines the strength of the connection.

Pins are subject to strains by shearing, bearing and bending, but their resistance to the latter two, in almost every case, determines the size of the pin to be used. The usual allowable strains, lbs. per square inch, on pins are as follows:

Pins. Shearing. Bearing. Bending.
Iron pins, railroad bridges, Iron pins, highway bridges and buildings, $\quad 9,000 \quad 15,000 \quad 18,000$
Steel pins, railroad bridges, $\quad 9,000 \quad 15,000 \quad 18,000$
Steel pins, highway bridges and
buildings,
11,25 $18,000 \quad 22,500$
The following tables give the shearing, bearing and bending values of pins, of different diameters, for the above strains.

252 THE PASSAIC ROLLING MILL COMPANY.

THE PASSAIC ROLLING MILL COMPANY. 253

2.54 THE PASSAIC ROLLING MILL COMPANY.

SHEARING AND BEARING VALUE OF RIVETS.

Diameter of Rivet, Inches.	Area of Rivet, Sq. In.	Single Shear at 6,ooo lbs. per Sq. In.	Bearing Value at 12,000 lbs. per Sq. In. for Different Thicknesses of Plate, in Inches.								
			$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$-\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$
$\begin{array}{ll} \frac{3}{8} & \frac{1}{2} \\ \frac{5}{8} & \frac{3}{4} \\ \frac{7}{8} & 1 \end{array}$. 110	660	1120				$\begin{aligned} & 3720 \\ & 4500 \\ & 5250 \\ & 6000 \end{aligned}$	$\begin{aligned} & 5060 \\ & 5910 \\ & 6750 \end{aligned}$	$\begin{aligned} & 6560 \\ & 7500 \end{aligned}$	$\begin{aligned} & 7220 \\ & 8250 \end{aligned}$	9000
	. 196	1180	1500	1880	2250						
	. 307	1840	1860	2320	2790	3250					
	. 442	2650	2250	2810	3370	3940					
	. 601	3610	2630	3280	3940	4590					
	. 785	4710	3000	3750	4500	5250					
Diameter of Rivet, Inches ches.		Single Shear at $7,500 \mathrm{lbs}$. per Sq. In.	Bearing Value at $15,000 \mathrm{lbs}$. per Sq. In. for Different Thicknesses of Plate, in Inches.								
			$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$
$\frac{3}{8}$											
$5 \quad \frac{1}{2}$.196	1470	1880	2340	2810						
$\frac{5}{8}$. 307	2300	2340	2930	3520	4100					
$\frac{3}{4}$. 442	3310	2810	3520	4220	4920	5630	6330			
$\frac{7}{8}$. 601	4510	3280	4100	4920	5740	6560	7380	8200	9020	
1	. 785	5890	3750	4690	5620	6560	7500	8440	9380	10310	11250

Diameter of Rivet, Inches.	Area of Rivet, Sq. In.	Single Shear at 9,000 lbs. per Sq. In.	Bearing Value at $18,000 \mathrm{lbs}$. per Sq. In. for Different Thicknesses of Plate, in Inches.								
			$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$-\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{1}{1} \frac{1}{6}$	$\frac{3}{4}$
$\frac{3}{8}$. 110	990	1680								
	. 196	1770	2250	2820	3370						
$\frac{5}{8}$. 307	2760	2790	3480	4180	4870	5580				
$\frac{7}{8}$ - $\frac{3}{4}$. 442	3970	3370	4210	5050	5910	6750	7590			
	. 601	5410	3940	4920	5910	6880	7870	8860	9840	10830	
1	. 785	7060	4500	5620	6750	7870	9000	10120	11250	12370	13500
Diameter of Rivet, Inches.	Area of Rivet, Sq. In.	Single Shear at 10,000 lbs. per Sq. In.	Bearing Value at $20,000 \mathrm{lbs}$. per Sq. In. for Different Thicknesses of Plate, in Inches.								
			$\frac{1}{4}$	$\frac{5}{16}$	$\frac{3}{8}$	$\frac{7}{16}$	$\frac{1}{2}$	$\frac{9}{16}$	$\frac{5}{8}$	$\frac{11}{16}$	$\frac{3}{4}$
$\frac{3}{8}$. 110	1100	1880								
$\frac{5}{8}$ 年	. 196	1960	2500	3130	3750						
	. 307	3070	3130	3910	4690	5470					
$\frac{3}{4}$1	. 442	4420	3750	4690	5630	6560	7500	8440			
	. 601	6010	4380	5470	6570	7660	8750	9840	10940	12030	
	. 785	7850	5000	6250	7500	8750	10000	11250	12500	13750	15000

256 THE PASSAIC ROLLING MILL COMPANY.

WEIGHT OF RIVETS, AND ROUND-HEADED BOLTS WITHOUT NUTS, PER 100. Lengths from under head.							
Length, Inches.	$\begin{gathered} \frac{3}{8}{ }^{\prime \prime} \\ \text { Dia. } \end{gathered}$	$\begin{gathered} \frac{1}{\frac{1}{2}^{\prime \prime}} \\ \text { Diai. } \end{gathered}$	$\begin{gathered} \frac{5}{\frac{5}{8}} \\ \text { Dia. } \end{gathered}$	$\begin{gathered} \frac{3}{4 \prime \prime} \\ \text { Dia. } \end{gathered}$	$\begin{gathered} 7 \prime \prime \\ 8 \\ \text { Dia. } \end{gathered}$	$\begin{gathered} \mathbf{1}^{\prime \prime} \\ \text { Dia. } \end{gathered}$	$\begin{aligned} & 1 \frac{14^{\prime \prime}}{4} \\ & \text { Dia. } \end{aligned}$
$1{ }^{1}$	5.4	12.6	21.5	28.7	43.1	65.3	123.
$1 \frac{1}{2}$	6.2	13.9	23.7	31.8	47.3	70.7	133.
$1 \frac{13}{4}$	6.9	15.3	25.8	34.9	51.4	76.2	142.
2	7.7	16.6	27.9	37.9	55.6	81.6	150.
$2{ }^{\frac{1}{4}}$	8.5	18.0	30.0	41.0	59.8	87.1	159.
$2 \frac{1}{2}$	9.2	19.4	32.6	44.1	6:3.0	92.5	167.
${ }^{2}$	10.0	20.7	34.3	47.1	68.1	98.0	176.
3	10.8	22.1	36.4	50.2	72.3	103.	184.
$3{ }_{4}^{1}$	11.5	23.5	38.6	53.3	76.5	109.	193.
$3 \frac{1}{2}$	12.3	24.8	40.7	56.4	80.7	114.	201.
$3{ }_{4}^{3}$	13.1	26.2	42.8	59.4	84.8	120.	210.
4	13.8	27.5	45.0	62.5	89.0	125.	218.
$4 \frac{1}{4}$		28.9	47.1	65.6	93.2	131.	227.
$4 \frac{1}{2}$		30.3	49.2	63.6	97.4	136.	236.
$4{ }^{\frac{3}{4}}$		31.6	51.4	71.7	102.	142.	244.
5		33.0	53.5	74.8	106.	147.	253.
$5 \frac{1}{4}$			55.6	77.8	110.	153.	261.
$5 \frac{1}{2}$			57.7	80.9	114.	158.	270.
$5{ }^{\frac{3}{4}}$			59.9	84.0	118.	163.	278.
6			62.0	87.0	122.	169.	287.
$6{ }^{1}$				93.2	131.	180.	304.
7				99.3	139.	191.	321.
$7 \frac{1}{2}$				106.	147.	202.	338.
8				112.	156.	213.	355.
$\begin{array}{\|l\|} \hline 100 \\ \text { Heads. } \end{array}$	1.8	5.7	10.9	13.4	22.2	38.0	82.0

LENGTH OF RIVET SHANK REQUIRED TO FORM ONE RIVET HEAD.

All dimensions in inches.

WEIGHT OF 100 BOLTS WITH SQUARE HEADS AND NUTS.

(Hoopes and Townsend's List.)

Length under head to point.	DIAMETER OF BOLTS.								
	$\frac{1}{4} \mathrm{in}$.	$\frac{5}{10} \mathrm{in}$.	$\frac{3}{x} \mathrm{in}$.	$\frac{7}{16} \mathrm{in}$.	$\frac{1}{2} \mathrm{in}$.	$\frac{5}{8} \mathrm{in}$.	$\frac{3}{4}$ in.	$\frac{7}{8} \mathrm{in}$.	1 in.
	lbs.								
$1 \frac{1}{2}$	4.0	7.0	10.5	15.2	22.5	39.5	63.0		
$1{ }^{\frac{3}{4}}$	4.4	7.5	11.3	16.3	23.8	41.6	66.0		
2	4.8	8.0	12.0	17.4	25.2	43.8	69.0	109.0	163
$2 \frac{1}{4}$	5.2	8.5	12.8	18.5	26.5	45.8	72.0	113.3	169
$2 \frac{1}{2}$	5.5	9.0	13.5	19.6	27.8	48.0	75.0	117.5	174
2.4	5.8	9.5	14.3	20.7	29.1	50.1	78.0	121.8	180
3	6.3	10.0	15.0	21.8	30.5	523	81.0	126.0	185
$3 \frac{1}{2}$	7.0	11.0	16.5	24.0	33.1	56.5	87.0	154.3	196
4	7.8	12.0	18.0	26.2	35.8	60.8	93.1	142.5	-07
$4 \frac{1}{2}$	8.5	13.0	19.5	28.4	38.4	65.0	99.1	151.0	218
5	9.3	14.0	21.0	30.6	41.1	69.3	105.2	159.6	229
$5 \frac{1}{2}$	10.0	15.0	$\underline{22.5}$	32.8	43.7	73.5	111.3	168.0	240
6	10.8	16.0	24.0	35.0	46.4	77.8	117.3	176.6	251
$6 \frac{2}{2}$	25.5	37.2	49.0	82.0	123.4	185.0	262
7			27.0	39.4	51.7	86.3	129.4	193.7	273
$7 \frac{1}{2}$	28.5	41.6	54.3	90.5	135.0	202.0	284
8			30.0	43.8	59.6	94.8	141.5	210.7	295
9				46.0	64.9	103.3	153.6	227.8	317
10				48.2	70.2	111.8	165.7	224.8	339
11				50.4	75.5	120.3	177.8	261.9	360
12				52.6	80.8	128.8	189.9	278.9	382
Perin. additional.	1.4	2.1	3.1	4.2	5.5	8.5	12.3	16.7	21.8

WEIGHTS of NUTS and BOLT-HEADS, IN POUNDS.

For Calculating the Weight of Longer Bolts.

Diameter of Bolt in Inches.		$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	8
Weight of Hexagon Nut and Head Weight of Square Nut and Head.	\ldots	.017 .091	.057 .069	.128 .164	$\begin{aligned} & .207 \\ & .320 \end{aligned}$.43 .55	.73 .88
Diameter of Bolt in Inches.	1	$1{ }_{1}^{1}$	$1 \frac{1}{2}$	$1{ }^{\frac{3}{4}}$	2	$2 \frac{1}{2}$	3
Weight of Hexagon Nut and Head. . Weight of Square Nut and Head.	1.10 1.31	2.14 2.56	3.78 4.42	5.6 7.0	8.75 10.5	17 21	28.8 36.4

BOLTS AND NUTS.

BOLTS.
U. S. Standard Screw Threads.

| Diam. |
| :---: | :---: |
| of |$|$| No. of |
| :---: |
| Threads |

Bolt, per

Ins. Inch.
${ }^{\text {Ins. }}$

$\frac{1}{4}$	20	.185
$\frac{5}{16}$	18	.240
$\frac{3}{8}$	16	.294
$\frac{3}{7}$	14	.344
$\frac{7}{16}$		

12	
$\frac{1}{2}$	13
$\frac{9}{16}$	12
$\frac{5}{8}$	11
$\frac{3}{4}$	10

$\frac{7}{\frac{7}{8}}$	9	.731	.601	.419
1	8	.837	.785	.550
$1 \frac{1}{8}$	7	.940	.994	.694
$1^{\frac{1}{4}}$	7	1.06	1.23	.890

	$1 \frac{3}{4}$	6	1.16	1.48
$1 \frac{1}{2}$	6	1.28	1.77	1.06
$1 \frac{5}{8}$	$5 \frac{1}{2}$	1.39	2.07	1.51
$1 \frac{3}{4}$	5	1.49	2.40	1.74
$1 \frac{1}{8}$	5	1.61	2.76	2.05
2	$4 . \frac{1}{2}$	1.71	3.14	2.30
$2 \frac{1}{4}$	$4 \frac{1}{2}$	1.96	3.98	3.02
$2 \frac{1}{2}$	4	2.17	4.91	3.71
2	4	2.42	5.94	4.62
2	$3 \frac{3}{4}$	2.63	7.07	5.43
3	$3 \frac{1}{2}$	2.88	8.30	6.51
$3 \frac{1}{4}$	$3 \frac{1}{2}$	3.10	9.62	7.55
$3 \frac{1}{2}$	3	3.32	11.04	8.64
4	3	3.57	12.57	10.00
$4 \frac{1}{4}$	$2 \frac{1}{4}$	3.80	14.19	11.33
$4 \frac{1}{2}$	$2 \frac{1}{4}$	4.03	15.90	12.74
$4 \frac{3}{4}$	25	4.25	17.72	14.23
5	$2 \frac{1}{2}$	4.48	19.63	15.76

MANUFACTURERS STANDARD, SQUARE AND HEXAGON HOT-PRESSED NUTS.

NUMBER OF EACH SIZE IN IOO LBS.

Size of Bolt, Inches.	Number of Square.	Number of Hexagon.	$\begin{aligned} & \text { Size of } \\ & \text { Bolt, } \\ & \text { Inches. } \end{aligned}$	Number of Square.	Number of Hexagon.
$\frac{1}{4}$	6,800	8,000	$1 \frac{13}{6}$	41.0	56.0
$\frac{5}{16}$	3,480	4,170	$1 \frac{1}{2}$	31.3	42.0
	2,050	2,410	$1{ }_{1}$	24.8	33.4
${ }^{7}{ }^{7}$	1,290	1,460	$1{ }^{\frac{3}{1}}$	19.9	26.7
$\frac{1}{2}$	850	1,020	$1 \frac{7}{8}$	16.2	21.5
$5 \frac{9}{16}$	600	710	2	13.4	22.4
	440	520	${ }^{2}$	10.7	17.7
$\frac{7}{8}$	159	370 226	${ }_{2}{ }^{2}$	8.9 7.3	12.3 10.2
1	106	176	3	6.2	8.7
$1 \frac{1}{8}$	73	104	$3{ }^{1}$	4.7	7.5
$1{ }^{1}$	54	75	$3 \frac{1}{2}$	4.0	6.3

STANDARD SIZES OF WASHERS.
number in 100 lbs.

bize of Bolt, Inches.	Diameter of Washer, Inches.	Size of Hole, Inches.	Thickness, Wire Gauge.	$\begin{aligned} & \text { Average } \\ & \text { Number } \\ & \text { in } 100 \mathrm{lbs} . \end{aligned}$
$\frac{1}{4}$	$\frac{3}{4}$	$\frac{5}{16}$	16	13,845
$\frac{5}{16}$	$\frac{7}{8}$	$\frac{3}{8}$	16	11,220
$\frac{3}{8}$	1	$\frac{7}{16}$	14	6,573
7^{76}	$1{ }^{\frac{1}{4}}$	$\frac{1}{2}$	14	4,261
	$1{ }^{\frac{3}{8}}$	$\frac{9}{16}$	12	2,683
$5 \frac{9}{16}$	$1 \frac{1}{2}$		12	2,249
$\frac{5}{8}$	${ }^{13}$	13	10	1,315
$7 \quad \frac{3}{4}$	$\stackrel{2}{2}$		10	1,013
${ }^{8} 1$	${ }^{2 \frac{1}{4}}$	$1 \frac{1}{16}$	9	617
$1 \frac{1}{8}$	$2{ }^{\frac{3}{3}}$	$1{ }_{1}^{1}$	9	516
$1{ }^{1} \frac{1}{4}$	3	$1 \frac{3}{8}$	9	403
$1 \frac{3}{8}$	$3{ }_{4}^{1}$	$1{ }^{1}$	8	320
$1^{5}{ }^{\frac{1}{2}}$	${ }_{3}^{3}$	${ }_{13}^{15}$	8	278
${ }^{18} 18$	${ }_{4}^{3}{ }_{4}$	$1{ }^{19}$	8	224
$1 \frac{1}{8}$	$4 \frac{1}{4}$	2	8	200
2	$4 \frac{1}{2}$	$2 \frac{1}{8}$	8	180
$2 \frac{1}{4} \quad 2 \frac{1}{2}$	${ }_{5}^{4 \frac{3}{4}}$	23 $2{ }^{2}$	6 6	110 91

BUCKLE PLATES.

Buckle plates are used for concrete, asphaltor stone paved floors of buildings and highway bridges. The width of the plates varies from 3 ft . to 5 ft , and the thickness from $\frac{1^{\prime \prime}}{4}$ to $\frac{3{ }^{\prime \prime}}{}{ }^{\prime \prime}$. The thickness should never be less than $\frac{114}{4}$, while $\frac{5}{16}{ }^{\prime \prime}$ is the usual thickness for bridge floors.

Buckle plates are made in long lengths having several buckles or domes in each plate. They are usually supported along the two longitudinal edges and at the extreme ends, and should be bolted or riveted to the supports, with $\frac{5}{8}{ }^{\prime \prime}$ or ${ }^{\frac{3}{4} / \prime}$ bolts or rivets spaced not over $6^{\prime \prime}$ centers. If the ends of the buckle plates do not rest on supports, they should be spliced with \mathbf{T} iron or a pair of angles riveted together.

The approximate total safe uniformly distributed loads are given in the following table for different thicknesses and sizes of buckle plates, well bolted down, calculated from the formula,

$$
W=4 \text { Sdt }
$$

where $W=$ total safe uniform load, in lbs., on a single square.
$\mathrm{S}=$ allowable unit strain, in lbs., per square inch.
$\mathrm{d}=$ depth of buckle, inches.
$\mathrm{t}=$ thickness of plate, inches.
TOTAL SAFE UNIFORMLY DISTRIBUTED LOADS, IN LBS., ON BUCKLE PLATES.

Size of Plate.	$\begin{gathered} 30^{\prime \prime} \\ \text { Square. } \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ \text { Square. } \end{gathered}$	$42^{\prime \prime}$ Square.	$\begin{gathered} 48^{\prime \prime} \\ \text { Square. } \end{gathered}$	$54^{\prime \prime}$ Square.	$60^{\prime \prime}$ Square.
Thickness, in Inches.	2 Inches, Depth of Buckle.					
$\frac{5}{16}$	11,000	9,100	7,300	6,000	5,000	4,200
	16,400	13,800	11,800	10,000	8,600	7,300
	22,200	19,400	17,000	14,700	12,700	11,200
	$2 \frac{1}{2}$ Inches, Depth of Buckle.					
$\frac{5}{16}$	13,800	11,300	9,100	7,500	6,300	5,300
	20,500	17,300	14,800	12,500	10,700	9,200
	27,600	24,300	21,300	18,400	15,900	13,900
	3 Inches, Depth of Buckle.					
$\frac{1}{4}$						6,300
$\frac{5}{16}$	24,600	20,700	17,700	15,000	12,900	11,000
$\frac{3}{8}$	33,200	29,000	25,400	22,100	19,100	16,700

If the buckles are inverted, i.e., suspended, the safe loads will be increased from 2 to 4 times that given in the above table, depending upon the size of the plate.

Buckle plates are preferably made of soft steel.

PASSAIC BUCKLE PLATES.

DIMENSIONS OF BUCKLE PLATES.

No. of Plate.	Buckle.		Depth of Buckle. H.	Number of Buckles in One Plate.	Fillets. F.
	L.	W.			
1	$2^{\prime}-2^{1 / 1}$	$2^{\prime}-3_{2}^{1 / \prime}$	$22^{\prime \prime}$	1 to 8	
2	$2^{\prime}-5^{\prime \prime}$	$3^{\prime}-2^{\prime \prime}$	$21^{\prime \prime}$	1 to 6	E
3	$2^{\prime}-7^{\prime \prime}$	$2^{\prime}-7^{\prime \prime}$	$3^{\prime \prime}$	1 to 6	E
4	$2^{\prime}-7^{\prime \prime}$	$2^{\prime}-\gamma^{\prime \prime}$	$2^{\prime \prime}$	1 to 6	\sum
5	$3^{\prime}-2^{\prime \prime}$	$3^{\prime}-4^{\prime \prime}$	$3^{\prime \prime}$	1 to 6	
6	$3^{\prime}-4^{\prime \prime}$	$3^{\prime}-9^{\prime \prime}$	$2 \frac{1}{2}^{\prime \prime}$	1 to 6	ご
					E.

Buckles of other dimensions than those given in table may be made by special arrangement.

262 THE PASSAIC ROLLING MIIL COMPANY.										
STANDARD SLEEVE NUTS AND UPSETS. DIMENSIONS IN INCHES.										
Dianeter of Rods.	Side of \square Rods.								Addi leng rod re for up	onal of 'red ne t. \square
$\begin{aligned} & \frac{3}{4} \\ & \frac{7}{8} \\ & 1 \end{aligned}$	$\begin{aligned} & \frac{5}{8} \\ & \frac{3}{4} \\ & \frac{7}{8} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \frac{1}{8} \\ & 1 \frac{3}{8} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \\ & 4 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 2 \frac{1}{4} \\ & 2 \frac{1}{4} \\ & 2 \frac{3}{8} \end{aligned}$	$\begin{aligned} & 2 \frac{5}{8} \\ & 25 \\ & 2 \frac{5}{4} \end{aligned}$	$\begin{aligned} & 8 \\ & 7 \\ & 6 \end{aligned}$	$\begin{aligned} & 8 \frac{1}{4} \\ & 8 \frac{1}{2} \\ & 9 \frac{1}{4} \end{aligned}$	5 7	$\begin{aligned} & 3 \frac{3}{4} \\ & 3 \frac{1}{4} \\ & 4 \frac{3}{4} \end{aligned}$	$4 \frac{3}{4}$ $3{ }^{3}$ 5
$\begin{aligned} & 1 \frac{1}{8} \\ & 1_{4}^{\frac{1}{4}} \\ & 1_{\frac{3}{8}}^{3} \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \frac{1}{8} \\ & 1 \frac{1}{4} \\ & 1 \frac{3}{8} \end{aligned}$	$\begin{aligned} & 1 \frac{1}{2} \\ & 1_{8}^{5} \\ & 1 \frac{7}{8} \\ & 2 \end{aligned}$	$\begin{aligned} & 4 \frac{1}{2} \\ & 4 \frac{1}{2} \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2 \frac{7}{8} \\ & 2 \frac{7}{3} \\ & 3 \frac{1}{4} \\ & 3 \frac{1}{4} \end{aligned}$	$\begin{aligned} & 3 \frac{5}{16} \\ & 3 \frac{5}{16} \\ & 3 \frac{3}{4} \\ & 3_{4}^{3} \end{aligned}$	$\begin{aligned} & 6 \\ & 5 \frac{1}{2} \\ & 5 \\ & 4 \frac{1}{2} \end{aligned}$	$\begin{array}{r} 9 \frac{1}{4} \\ 9 \frac{1}{2} \\ 10 \frac{1}{4} \\ 10 \frac{1}{4} \end{array}$	$\begin{array}{r} 8 \\ 9 \\ 13 \\ 13 \end{array}$	$\begin{aligned} & 4 \frac{1}{4} \\ & 3 \frac{3}{4} \\ & 5 \frac{1}{4} \\ & 4 \frac{3}{4} \end{aligned}$	$4 \frac{1}{4}$ $3 \frac{1}{2}$ $4 \frac{1}{2}$ 4
$\begin{aligned} & 1 \frac{5}{8} \\ & 1_{4}^{\frac{3}{4}} \\ & 1_{\frac{7}{8}} \\ & 2 \end{aligned}$	$1 \frac{1}{2}$ $1 \frac{5}{8}$ $1 \frac{3}{4}$	$\begin{aligned} & 2 \frac{1}{8} \\ & 2 \frac{1}{4} \\ & 2 \frac{3}{8} \\ & 2 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \frac{1}{2} \\ & 5 \frac{1}{2} \\ & 5 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 3 \frac{5}{8} \\ & 3 \frac{3}{4} \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 4 \frac{3}{16} \\ & 4 \frac{5}{16} \\ & 4 \frac{5}{8} \\ & 4 \frac{5}{8} \end{aligned}$	$\begin{aligned} & 4 \frac{1}{2} \\ & 4 \frac{1}{2} \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 10 \frac{1}{2} \\ & 11 \\ & 11 \frac{1}{4} \\ & 11 \frac{1}{4} \end{aligned}$	$\begin{aligned} & 16 \\ & 18 \\ & 21 \\ & 22 \end{aligned}$	$\begin{aligned} & 4 \frac{1}{4} \\ & 4 \frac{1}{4} \\ & 4 \\ & 3 \frac{3}{4} \end{aligned}$	$3 \frac{1}{2}$ $4 \frac{1}{2}$ 4
$\begin{aligned} & 2 \frac{1}{8} \\ & 2 \frac{1}{4} \\ & 2 \frac{1}{2} \\ & 2 \frac{3}{4} \\ & 3 \end{aligned}$	$\begin{array}{r} 1 \frac{7}{8} \\ 2 \\ 2 \frac{1}{4} \\ 2 \frac{1}{2} \end{array}$	$\begin{aligned} & 2 \frac{5}{8} \\ & 2 \frac{7}{8} \\ & 3 \frac{1}{4} \\ & 3 \frac{1}{2} \\ & 3 \frac{3}{4} \end{aligned}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 4 \frac{5}{8} \\ & 4 \frac{3}{4} \\ & 5 \frac{1}{8} \\ & 5 \frac{1}{2} \\ & 5 \frac{7}{8} \end{aligned}$	$\begin{aligned} & 5 \frac{3}{8} \\ & 5 \frac{1}{2} \\ & 5 \frac{15}{16} \\ & 6 \frac{3}{8} \\ & 6 \frac{3}{4} \end{aligned}$	$\begin{aligned} & 4 \\ & 3 \frac{1}{2} \\ & 3 \frac{1}{2} \\ & 3 \frac{1}{4} \\ & 3 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \frac{1}{4} \\ & 12 \frac{1}{2} \\ & 12 \frac{3}{4} \\ & 13 \end{aligned}$	29 33 40 47 58	$\begin{aligned} & 3 \frac{3}{4} \\ & 4 \frac{1}{2} \\ & 5 \\ & 4 \frac{1}{2} \\ & 4 \end{aligned}$	4 $4 \frac{1}{2}$ $4 \frac{3}{4}$ 4

THE PASSAIC ROLLING MILL COMPANY, 263

STANDARD STEEL EYE BARS.

W.	t.	D.	d.	S-S.	L.
Width of Bar, Inches.	Minimum of Bar, Inches.	Diameter of Head, Inches.	Diameter of Largest Pin Hole, Inches.	Sectional Area of Head on Lines $\mathrm{S}-\mathrm{S}$ in excess of that in Body of Bar.	Additional Length of Bar beyond Cen. of Pin Hoe to form one Head, Ins.
$\begin{aligned} & 3 \\ & 3 \end{aligned}$	$\frac{3}{4}^{\frac{3}{4}}$	$\begin{aligned} & 7 \\ & 8 \end{aligned}$	$3_{1 \frac{1}{6}}^{2 \frac{11}{16}}$	$\begin{aligned} & 42 \% \\ & 42 \end{aligned}$	$18 \frac{1}{\frac{1}{2}}{ }^{14 \frac{1}{2}}$
4		$9^{\frac{1}{2}} 10 \frac{1}{2}$	$4_{8}^{\frac{7}{8}}$	$\begin{aligned} & 37 \frac{1}{2} \\ & 39 \end{aligned}$	$23 \frac{1}{\frac{1}{2}}{ }^{18 \frac{1}{2}}$
5	$\frac{3}{4}^{\frac{3}{4}}$	$11 \frac{1}{2}{ }_{12 \frac{1}{2}}$	$5_{\frac{3}{8}} 4^{\frac{3}{8}}$	$\begin{aligned} & 41 \\ & 41 \end{aligned}$	25⿺𠃊 ${ }^{\frac{1}{2}}$
6	${ }_{8}^{7}{ }^{\frac{7}{8}}$	$13{ }^{\frac{1}{2}} 14_{2}^{1}$	$5^{\frac{7}{8}} \quad \begin{array}{ll} & 4 \frac{7}{8} \\ \hline \end{array}$	$\begin{aligned} & 42 \\ & 42 \\ & \hline \end{aligned}$	$26 \frac{1}{2}{ }^{22}$
7 8 10	${ }_{1}{ }^{\frac{1}{8}} 1 \begin{aligned} & 1 \\ & \\ & \\ & 1\end{aligned}$	16 18 23	7^{5}	$\begin{aligned} & 43 \\ & 37 \frac{1}{2} \\ & 40 \end{aligned}$	$\begin{array}{ll}32 \frac{1}{2} & 28 \\ & 40\end{array}$

NOTES ON PASSAIC STEEL EYE BARS.

Passaic standard steel eye bars are forged without the addition of extraneous metal and without welds of any kind, and are guaranteed under the conditions given in the above table to develop the full strength of the bar when tested to destruction.

The maximum sizes of pin holes, given in the above table, allow an excess in the net section of the head over that of the body of the bar of 40 per cent., when the thickness of the head is the same as the thickness of the body of the bar. The thickness of the heac is usually $1-16$ of an inch thicker than the body of the bar; and where a number of eye bars are to be placed closely together, as at a joint, the thicknesses of the heads should be considered I-8 of an inch greater than the bodies of the bars in order to allow for the increased thickness of the heads and for the usual roughness of forged work.

Unless otherwise specified, the steel manufactured by us for the use of eye bars is open hearth medium steel conforming with the standard specifications of the Association of American Steel Manufacturers.

All eye bars are finished to length, and the eyes bored at the specified distances, center to center, according to U. S. standard measurements.

Eye bars having larger or smaller heads than the above standards can be furnished by special arrangement.

STANDARD PINS AND NUTS.

$$
\mathrm{G}=\mathrm{GRIP} . \quad \mathrm{L}=\mathrm{G}+\frac{3^{\prime \prime}}{8} .
$$

D.	т.	s.			
			$\begin{aligned} & \text { Short Dial } \\ & \text { Sif } \\ & \text { inctes } \end{aligned}$		
	${ }_{1_{1+\frac{1}{2}}^{1}}^{1}$	${ }^{1 \frac{1}{2}}$	$\begin{aligned} & { }^{13}+\frac{13}{4} \\ & 3 \frac{13}{4} \\ & 3 \frac{1}{4} \end{aligned}$	$\begin{gathered} 2_{2}^{2} \\ 3_{3}^{3 \frac{3}{4}} \end{gathered}$	1.5
		$\frac{1}{1}$	$\begin{aligned} & 3 \frac{1}{2} \\ & 3_{4}^{3 \frac{1}{4}} \\ & { }_{4}^{\frac{1}{2}} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.5 \\ & 2.5 \\ & 3.0 \end{aligned}$
	$\begin{aligned} & 2 \frac{12}{3} \\ & 2 \frac{1}{2 \frac{1}{2}} \end{aligned}$	$\stackrel{11}{\prime \prime}$	$\begin{aligned} & 4 \frac{12}{2} \\ & 4 \frac{1}{2} \frac{1}{2} \\ & 4 \frac{3}{4} \\ & 4 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 5 \frac{5 \frac{1}{4}}{5 \frac{1}{2}} \\ & 5_{\frac{1}{2}}^{5 \frac{1}{2}} \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \\ & 3.8 \\ & 3.0 \end{aligned}$
	$\begin{gathered} 3 \frac{12}{2} \\ { }_{4}^{4 \frac{1}{2}} \end{gathered}$	$\frac{1 \frac{1}{v}}{\nu \mid}$	$\begin{aligned} & 5 \frac{1}{2} \\ & 6^{5 \frac{1}{2}} \\ & { }^{2} \end{aligned}$	${ }^{66_{7}^{6 \frac{1}{7}}}{ }_{7}^{6+1}$	$\begin{aligned} & 3.8 \\ & 3.8 \\ & 6.7 \\ & 6.7 \end{aligned}$
$\begin{aligned} & \hline \frac{5 \%}{7} \\ & 7 \\ & 8 \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & \hline \end{aligned}$	$\stackrel{2 \ddagger}{2 \ddagger}_{2+\frac{1}{2 \ddagger}}^{2 \frac{1}{4}}$	$\begin{gathered} 7 \\ 8 \\ 10 \frac{10}{10 \frac{1}{2}} \\ 102 \end{gathered}$	(${ }_{\text {c }}^{8}$	$\begin{aligned} & 9.9 \\ & \hline 2.0 \\ & \hline 2.8 \\ & 18.8 \end{aligned}$

PASSAIC STANDARD CLEVISES.

The distance X can be varied to suit connections.

		U	D	P	L	W	T	S	
$\left\lvert\, \begin{gathered} \text { ber } \\ \text { of } \\ \text { Clevis. } \end{gathered}\right.$	$\begin{aligned} & \text { of } \\ & \text { Square } \\ & \text { Bar, } \\ & \text { inches. } \end{aligned}$	$\begin{gathered} \text { Upset } \\ \text { for } \\ \text { Square } \\ \text { Bar. } \end{gathered}$	$\begin{gathered} \text { Diam- } \\ \text { eter } \\ \text { of } \\ \text { Eye, } \\ \text { inches. } \end{gathered}$	$\begin{aligned} & \text { Diam- } \\ & \text { eter } \\ & \text { of } \\ & \text { Pin, } \\ & \text { inches. } \end{aligned}$	$\begin{gathered} \text { Length } \\ \text { of } \\ \text { of } \begin{array}{c} \text { orches. } \end{array} \end{gathered}$	Width Fork, inches.	$\begin{aligned} & \text { Thick- } \\ & \text { ness } \\ & \text { of } \\ & \text { Fork, } \\ & \text { inches. } \end{aligned}$	Length Thread Thread inches	$\begin{gathered} \text { of } \\ \text { one } \\ \text { Clevis, } \\ \text { lbs. } \end{gathered}$
$1\{$	$\frac{3}{4}$ $\frac{3}{4}$ $\frac{7}{8}$	$\begin{aligned} & 1 \\ & 1 \frac{1}{8} \\ & 1 \frac{3}{8} \end{aligned}$	\} $\} 3 \frac{1}{2}$	$14 \frac{1}{6}$	$6{ }_{2}^{1}$	$1{ }^{\frac{3}{4}}$	$\frac{1}{2}$	$1 \frac{3}{4}$	8
$2\{$	1 1 1 1 4	$\begin{aligned} & 1 \frac{1}{2} \\ & 1 \frac{5}{8} \\ & 1 \frac{7}{8} \end{aligned}$	$\} 4 \frac{1}{2}$	$2{ }^{\frac{3}{16}}$	$6 \frac{1}{2}$	2	$\frac{5}{8}$	$2{ }^{\frac{1}{4}}$	12
$3\{$	$\begin{aligned} & 1^{3} \\ & 1 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \frac{1}{8} \end{aligned}$	$\} 5 \frac{1}{2}$	214	7	$2 \frac{1}{2}$	$\frac{3}{4}$	$2 \frac{1}{2}$	20
$4\{$	15 1 1 17	$\begin{aligned} & 2 \frac{3}{8} \\ & 2 \frac{1}{2} \\ & 2 \frac{3}{7} \end{aligned}$	$\} 6{ }^{\frac{1}{2}}$	215	8	3	$\frac{7}{8}$	3	28
$5\{$	$\begin{aligned} & 2 \\ & 2 \frac{1}{3} \end{aligned}$	$\begin{aligned} & 27 \\ & 3 \frac{1}{8} \\ & \end{aligned}$	$\}^{8}$	$3{ }_{1}{ }^{7}$	9	$3 \frac{1}{2}$	1	$3 \frac{1}{2}$	45

Passaic clevises are proportioned to develop the full strength of iron or steel bars of the sizes given.

The size of pin given is the maximum for each size of clevis when the largest bar is used.

LINEAL EXPANSION OF SUBSTANCES BY HEAT.

To find the increase in the length of a bar of any material due to an increase of temperature, multiply the number of degrees of increase of temperature by the coefficient for 100° and by the length of the bar, and divide by one hundred.

NAME OF SUBSTANCE.

Aluminum
Brass (cast)
Brick
Bronze
Cement, Portland
Concrete
Copper
Glass, flint
Granite
Gold, pure
Iron, wrought
" cast
Lead
Marble $\left\{\begin{array}{l}\text { from } \\ \text { to.. }\end{array}\right.$
Masonry, brick $\left\{\begin{array}{l}\text { from } \\ \text { to . }\end{array}\right.$
Mercury (cubic expansion)
Sandstone
Silver, pure
Slate
Steel, cast
" structural
" tempered
Tin
Wood, pine
Zinc

Coefficient for 100° Fahrenheit.
.001234
.000957
. 000306
. 000986
.000594
.000795
. 000887
. 000451
.000438
.000786
. 000648
.000556
.001571
. 000308
. 000786
. 000256
.000494
.009984
.000652
. 001079
.000577
.000636
.000663
.000689
. 001163
.000276
.001407

Coefficient for 180° Fahrenheit, or 100° Centigrade.

00222
.00172
.00055
. 00177
.00107
. 00143
.00160
.00081
.00079
. 00142
.00117
. 00100
.00283
. 00055
.00142
.00046
. 00089
.01797
.00117
. 00194
. 00104
.00114
. 00119
.00124
. 00210
. 00050
.00253

AREAS AND WEIGHTS of SQUARE AND ROUND STEEL BARS.

	\square		\bigcirc			\square		\bigcirc	
	Area.	Weight	Area.	Weight per ft.		Area.	Weight per ft.	Area.	Weight per ft.
0					2	4.000	13.60	3.142	10.68
	0.004	0.013	0.003	0.010	${ }^{\frac{1}{16}}$	4.254	14.46	3.341	11.36
	. 016	. 053	. 012	. 042		4.516	15.35	3.547	12.06
16	. 035	. 119	. 028	. 094	$\frac{3}{16}$	4.785	16.27	3.758	12.78
	. 062	. 212	. 049	. 167		5.063	17.22	3.976	13.52
	. 098	. 333	. 077	. 261	$\frac{5}{16}$	5.348	18.19	4.200	14.28
	. 141	. 478	. 110	. 375		5.641	19.18	4.430	15.07
$\frac{7}{16}$. 191	. 651	. 150	. 511	${ }_{16}$	5.941	20.20	4.666	15.86
	. 250	850	. 136	. 667	$\frac{1}{2}$	6.250	21.25	4.909	16.69
	. 316	1.076	. 248	. 845	$\frac{1}{1} \frac{9}{16}$	6.566	22.33	5.157	17.53
	. 391	1.328	. 307	1.043	8	6.891	23.43	5.412	18.40
16	. 473	1.608	. 371	1.262	$\frac{11}{16}$	7.223	24.56	5.673	19.29
	. 562	1.913	. 442	1.502	$\frac{3}{4}$	7.56	25.71	5.940	20.20
	. 660	2.245	. 518	1.763	${ }^{\frac{1}{13}}$	7.910	26.90	6.213	21.12
	. 766	2.603	. 601	2.044		8.266	28.10	6.492	22.07
$\frac{15}{16}$. 879	2.989	. 690	2.347		8.629	29.34	6.777	23.04
1	1.000	3.400	. 785	2.670	3	9.0	30.60		3
	1.129	3.838	. 887	3.014	$\frac{1}{16}$	9.379	31.89	7.366	25.04
8	1.266	4.303	. 994	3.379	${ }_{\frac{1}{8}}$	9.766	33.20	7.670	26.08
$\frac{3}{16}$	1.410	4.795	1.108	3.766	${ }^{\frac{3}{16}}$	10.16	34.55	7.98	
	1.563	5.312	1.227	4.173		10.56	35.92	8.2	8.20
	1.723	5.857	1.353	4.600		10.97	37.31	8.618	29.30
	1.891	6.428	1.485	5.049	$\frac{3}{8}$	11.39	38.73	8.946	30.42
$\frac{7}{16}$	2.066	7.026	1.623	5.518	$\frac{7}{16}$	11.82	40.18	9.2	31.56
	2.250	7.650	1.767	6.008		12.25	41.65	9.621	32.71
	2.441	8.301	1.918	6.520		12.69	43.14	9.968	833.90
	2.641	8.978	2.074	7.051	$\frac{5^{16}}{8}$	13.14	44.68	10.32	35.09
$\frac{11}{16}$	2.848	9.682	2.237	7.604	$\frac{11}{16}$	13.60	46.24	10.68	36.31
$\frac{3}{4}$	3.06	. 41	2.405	8.178		14.06	47.82	11.05	37.56
	3.285	11.17	2.580	8.773		14.54	49.42	11.42	38.81
${ }^{7}$	3.516	11.95	2.761	9.388		15.02	51.05	11.79	40.10
$\frac{15}{16}$	3.754	12.76	2.948	10.02	$\frac{15}{15}$	15.50	52.71	12.18	41.40

THE PASSAIC ROLLING MILL COMPANY. 269

AREAS AND WEIGHTS OF SQUARE AND ROUND STEEL BARS

(Continued).

	\square		\bigcirc			\square		\bigcirc	
	Area.	Weight per ft.	Area.	Weight per ft.		Area.	Weight per ft .	Area.	Weight per ft .
$\begin{aligned} & 4 \\ & \frac{1}{1}^{\frac{1}{16}} \\ & \frac{3}{16} \end{aligned}$	16.00	54.40	12.57	42.73	6	36.00	122.4	28.27	96.14
	16.50	56.11	12.96	44.07	$\frac{1}{8}$	37.52	127.6	29.47	100.2
	17.02	57.85	13.36	45.44	$\frac{1}{4}$	39.06	132.8	30.68	104.3
	17.54	59.62	13.77	46.83	$\frac{3}{8}$	40.64	138.2	31.92	108.5
$\begin{aligned} & \frac{1}{4} \\ & \frac{5}{16} \\ & \frac{3}{8} \\ & \frac{7}{16} \end{aligned}$	18.06	61.41	14.19	48.24	$\frac{1}{2}$	42.25	143.6	33.18	112.8
	18.60	63.23	14.61	49.66	$\frac{5}{8}$	43.89	149.2	34.47	117.2
	19.14	65.08	15.03	51.11	$\frac{3}{4}$	45.56	154.9	35.79	121.7
	19.69	66.95	15.47	52.58	$\frac{7}{8}$	47.27	160.8	37.12	126.2
$\begin{aligned} & \frac{1}{2} \\ & \frac{9}{16} \\ & \frac{5}{8}^{\frac{11}{16}} \end{aligned}$	20.25	68.85	15.90	54.07	7	49.00	166.6	38.49	130.9
	20.82	70.78	16.35	55.59	$\frac{1}{4}$	52.56	178.7	41.28	140.4
	21.39	72.73	16.80	57.12	$\frac{1}{2}$	56.25	191.3	44.18	150.2
	21.97	74.70	17.26	58.67	$\frac{3}{4}$	60.06	204.2	47.17	160.3
$\begin{aligned} & \frac{3}{4} \\ & \frac{7^{\frac{13}{16}}}{8} \\ & { }^{\frac{155}{16}} \end{aligned}$	22.56	76.71	17.72	60.25	8	64.00	217.6	50.27	171.0
	23.16	78.74	18.19	61.84	$\frac{1}{4}$	68.06	231.4	53.46	181.8
	23.77	80.81	18.67	63.46	$\frac{1}{2}$	72.25	245.6	56.75	193.0
	24.38	82.89	19.15	65.10	$\frac{3}{4}$	76.56	260.3	60.13	204.4
$\left\{\begin{array}{l} 5 \\ \frac{1}{8}^{\frac{1}{16}} \\ \frac{3}{16} \end{array}\right.$	25.00	85.00	19.64	66.76	9	81.00	275.4	63.62	216.3
	25.63	87.14	20.13	68.44	${ }^{\frac{1}{4}}$	85.56	290.9	67.20	228.5
	26.27	89.30	20.63	70.14	$\frac{1}{2}$	90.25	306.8	70.88	241.0
	26.91	91.49	21.14	71.86	$\frac{3}{4}$	95.06	323.2	74.66	253.9
$\begin{aligned} & \frac{1}{4} \\ & \frac{5}{16} \\ & \frac{3}{8} \\ & \frac{7}{16} \end{aligned}$	27.56	93.72	21.65	73.60	10	100.0	340.0		. 0
	28.22	95.96	22.17	75.37	$\frac{1}{4}$	105.1	357.2	82.	280.6
	28.89	98.23	22.69	77.15	4	110.3	374.9	86.5	294.4
	29.57	100.5	23.22	78.95	$\frac{3}{4}$	115.6	392.9	90.	308.6
$\begin{aligned} & \frac{1}{2} \\ & \frac{9}{16} \\ & \frac{5}{8} \\ & \frac{11}{16} \end{aligned}$	30.25	102.8	23.76	80.77	11	121.0	411.4	95.	323.1
	30.94	105.2	24.30	82.62	$\frac{1}{4}$	126.6	430.3	99.40	337.9
	31.64	107.6	24.85	84.49		132.3	449.6	103.9	353.1
	32.35	110.0	25.41	86.38	$\frac{3}{4}$	138.1	469.4	108.4	368.6
$\begin{aligned} & \frac{3}{4} \\ & \frac{13}{7^{16}} \\ & 7^{\frac{15}{8}} \\ & \frac{15}{16} \end{aligned}$	33.06	112.4	25.97	88.29	12	144.0	489.6	113.1	384.5
	33.79	114.9	26.54	90.22					
	34.52 35.25	117.4	27.11	92.17					
	35.25	119.9	27.69	94.14					

270 THE PASSAIC ROLLING MILL COMPANY.

WEIGHTS

OF PASSAIC STEEL ANGLES.

Size of Angle, in Inches.	Weights per foot for different thicknesses.									
	$\frac{5}{16}$	$\frac{3}{8 \prime \prime}$	$\frac{7}{16}^{\prime \prime}$	$\frac{1}{\frac{1}{2}}$	$\frac{9}{16}{ }^{\prime \prime}$	$\frac{5}{8 \prime}$	$\frac{1111}{16}$	$\frac{3}{4}{ }^{\prime \prime}$	$\frac{13}{13}{ }^{\prime \prime}$	$7^{\prime \prime}$
6×6		14.8	17.4	19.9	22.5	25.0	26.4	29.0	31.5	34.0
6×4		12.3	14.4	16.6	18.6	19.9	22.0	24.2	26.2	28.4
5×5		12.3	14.4	16.5	18.6	19.9	21.8	24.2		
$5 \times 3 \frac{1}{2}$		10.4	12.2	14.0	15.8	16.7	18.5	20.3		
5×3	8.16	9.86	11.2	13.0	14.2	15.9	17.6	19.3		
$4 \frac{1}{2} \times 3$	7.65	9.21	10.5	12.1	13.7	14.6	16.2	17.8		
4×4	8.16	9.86	11.2	12.9	14.7	15.7	17.4	19.1	20.8	
$4 \times 3 \frac{1}{2}$	7.65	9.21	10.5	12.1	13.7	14.6	16.2	17.8		
4×3	7.11	8.60	9.80	11.3	12.7	13.5				
$3 \frac{1}{2} \times 3 \frac{1}{2}$	7.11	8.60	9.76	11.0	12.5	13.5				
$3 \frac{1}{2} \times 3$	6.56	7.82	9.21	10.2	11.6	12.5				
Size of Angle, in Inches.	Weights per foot for different thicknesses.									
	$\frac{1}{8}{ }^{\prime \prime}$	$\frac{3}{16}^{\prime \prime}$	$4^{1 / 1}$	部"	$\frac{311}{8 \prime}$	$7^{7} 11$	$\frac{1}{2}{ }^{\prime \prime}$	-9 ${ }^{\prime \prime}{ }^{\prime \prime}$	$\frac{5}{8}^{\prime \prime}$	$11^{\prime \prime}$
$3 \frac{1}{2} \times 2 \frac{1}{2}$			4.90	6.15	7.17	8.43	9.35	10.6		
3×3			4.90	6.05	7.30	8.26	9.56	10.8	12.1	
$3 \times 2 \frac{1}{2}$			4.45	5.64	6.53	7.72	8.50	9.69		
3×2			4.05	5.10	5.88	6.94	7.65			
$2 \frac{1}{2} \times 2 \frac{1}{2}$			4.05	4.96	6.05	6.80	7.85			
$2 \frac{1}{2} \times 2$		2.75	3.70	4.45	5.40	6.42	7.45			
$2 \frac{1}{4} \times 2 \frac{1}{4}$		2.75	3.60	4.56	5.20	6.22	7.17			
$2 \frac{1}{4} \times 1 \frac{1}{2}$		2.28	3.06	3.64						
2×2		2.41	3.19	4.05	4.62	5.47	6.32			
$2 \times 1 \frac{3}{4}$		2.28	3.06	3.64						
$1_{1}^{3} \times 1 \times 1 \frac{3}{4}$		2.11	2.75	3.50	3.98	4.72				
		1.80	2.35	2.96	3.33					
$1{ }^{\frac{3}{8} \times 1} \times 1 \frac{1}{8}$	1.02	1.53	1.90	2.45						
$1 \frac{1}{4} \times 1 \frac{1}{4}$	1.02	1.46	2.01	2.55						
$1{ }_{1}^{1} \times 1$. 78	1.15	1.57							
(1)	. 68	. 99								

THE PASSAIC ROLLING MILL COMPANY. 271

WEIGHTS OF STEEL FLATS,

PER LINEAL FOOT.

Thickness, in Inches.	$1^{\prime \prime}$	$14^{\prime \prime}$	$1 \frac{1}{2}^{\prime \prime}$	$1{ }^{\frac{3}{4}}$	$2^{\prime \prime}$	$2{ }^{\frac{1}{4}}$	$2{ }_{2}^{11}$	$2^{3 / 1}$	$3{ }^{\prime \prime}$
$\frac{1}{16}$. 21	. 26	. 32	. 37	. 43	. 48	. 53	58	. 63
	. 42	. 53	. 64	. 75	. 85	. 96	1.06	1.17	1.28
$\frac{3}{16}$. 63	. 79	. 96	1.11	1.28	1.44	1.59	1.75	1.91
	. 85	1.06	1.28	1.49	1.70	1.91	2.12	2.34	2.55
	1.06	1.33	1.59	1.86	2.12	2.39	2.65	2.92	3.19
	1.28	1.59	1.92	2.23	2.55	2.87	3.19	3.51	3.83
	1.49	1.86	2.23	2.60	2.98	3.35	3.72	4.09	4.46
	1.70	2.12	2.55	2.98	3.40	3.83	4.25	4.67	5.10
	1.92	2.39	2.87	3.35	3.83	4.30	4.78	5.26	5.74
	2.12	2.65	3.19	3.72	4.25	4.78	5.31	5.84	6.38
	2.34	2.92	3.51	4.09	4.67	5.26	5.84	6.43	7.02
	2.55	3.19	3.83	4.47	5.10	5.75	6.38	7.02	7.65
	2.76	3.45	4.14	4.84	5.53	6.21	6.90	7.60	8.29
	2.98	3.72	4.47	5.20	5.95	6.69	7.44	8.18	8.93
	3.19	3.99	4.78	5.58	6.38	7.18	7.97	8.77	9.57
1	3.40	4.25	5.10	5.95	6.80	7.65	8.50	9.35	10.20
	3.61	4.52	5.42	6.32	7.22	8.13	9.03	9.93	10.84
	3.83	4.78	5.74	6.70	7.65	8.61	9.57	10.52	11.48
	4.04	5.05	6.06	7.07	8.08	9.09	10.10	11.11	12.12
	4.25	5.31	6.38	7.44	8.50	9.57	10.63	11.69	12.75
$1 \frac{5}{16}$	4.46	5.58	6.69	7.81	8.93	10.04	11.16	12.2	13.39
	4.67	5.84	7.02	8.18	9.35	10.52	11.69	12.85	14.03
$1 \frac{7}{16}$	4.89	6.11	7.34	8.56	9.78	11.00	12.22	13.44	14.66
	5.10	6.38	7.65	8.93	10.20	11.48	12.75	14.03	15.30
	5.32	6.64	7.97	9.30	10.63	1.95	13.28	14.61	15.94
	5.52	6.90	8.29	9.67	11.05	12.43	13.8	15.	16.58
111 11	5.74	7.17	8.61	10.04	11.47	12.91	14.34	15.78	17.22
$1 \frac{3}{4}$	5.95	7.44	8.93	10.42	11.90	13.40	14.88	16.37	17.85
$1 \frac{13}{18}$	6.16	7.70	9.24	10.79	12.33	13.86	15.40	16.9	8.49
$1 \frac{7}{8}$	6.38	7.97	9.57	11.15	12.75	14.34	15.94	17.5	19.13
$1 \frac{35}{16}$	6.59	8.24		11.53	13.18	14.83	16.47	18.12	19.77
2	6.80	8.50	10.20	11.90	13.60	15.30	17.00	18	40

272 THE PASSAIC ROLLING MILL COMPANY.

WEIGHTS OF STEEL FLATS,

PER LINEAL FOOT
(Continued).

Thickness, in inches.	$3{ }^{1}{ }^{\prime \prime}$	$4^{\prime \prime}$	$4_{2}^{1}{ }^{\prime \prime}$	$5^{\prime \prime}$	$5 \frac{1}{}{ }^{\prime \prime}$	$6^{\prime \prime}$	$6 \frac{1}{2}{ }^{\prime \prime}$	$7{ }^{\prime \prime}$	71/2].
$\frac{1}{16}$. 75	. 85	96	1.06	1.17	1.28	1.39	1.49	1.60
	1.49	1.70	1.92	2.13	2.34	2.55	2.77	2.98	3.19
$\frac{3}{16}$	2.23	2.55	2.87	3.19	3.51	3.83	4.14	4.46	4.78
$\frac{1}{7}$	2.98	3.40	3.83	4.25	4.67	5.10	5.53	5.95	6.36
	3.72	4.25	4.78	5.31	5.84	6.38	6.90	7.44	7.97
	4.47	5.10	5.74	6.38	7.02	7.65	8.29	8.93	9.57
	5.20	5.95	6.70	7.44	8.18	8.93	9.67	10.41	11.16
$\frac{1}{2}$	5.95	6.80	7.65	8.50	9.35	10.20	11.05	11.90	12.75
	6.70	7.65	8.61		0.52		12.43	13.39	. 34
	7.44	8.50	9.57	10.63	1.6	12.	13.8	14.8	15.94
	8.18		10.52	11.69	12.85	14.03	15.20	16.36	17.53
$\frac{3}{4}$	8.93	10.	11.48	12.75	14.03	15.30	16	17	19.13

	9.6711 .0512 .4313 .8115 .1916 .5817 .9519 .3420 .72								
	10.4111 .9013 .3914 .8716 .3617 .8519 .3420 .8322 .32								
	11.1612 .7514 .3415 .9417 .5319 .1320 .7222 .3223 .91								
1	11.90	13.60	15.30	17.00	18.70	20.40	22.10	23.80	25.50
	12.65	14.45	6.26			21.68	23.48	25.	
	13.39	15.30	17.22	19.13	21.04	42.95	24.87	26.7	28.68
	$\begin{aligned} & 14.13 \\ & 14.87 \end{aligned}$	16.15	18.17	'20.19	92.21	24.23	26.24	28.2	30.28
		17.00	19.13	21.25	23.38	25.50	27.62	29.75	
		17.85	20.08	22.32	24.54	26.78	29.01	31.	
	15.62 16.36	18.70	21.04	23.38	25.71	28.05	30.39	32.	06
	17.10	19.85	21.99	24.44	426.88	29.33	31.77	34	36.66
$1^{\frac{1}{2}}{ }^{16}$	17.85	20.40	22.95	25.50	28.05	30.60	33.15	35.70	38.26
	18.60	21.25	23.9	26.57	29.22	31.88	34.53	37.1	39.84
	19.34	22.10	24.87	27.63	30.39	33.15	,35.91	38.67	41.44
	20.08	822.95	25.82	28.69	31.55	34.43	37.30	40.16	43.03
13 ${ }^{\frac{1}{4}}$	20.83	23.80	26.78	29.75	32.73	35.70	38.68	41.65	
	21.57	24.	27.7	30.81	33.89	36.98	40.05	43.14	46.22
	22.31	125.50	28.69	31.87	35.06	38.25	41.44	44.63	47.82
$1 \frac{1}{15}$	23.06	26.35	29.64	32.94	436.23	39.53	42.82	46.12	49.41
2	23.80	27.20	, 30.60	34.00	37.40	40.80	44.20	47.60	51.00

THE PASSAIC ROLLING MILL COMPAN゙ソ. 273

WEIGHTS OF STEEL FLATS,

PER LINEAL FOOT
(Continued).

Thickness, in inches.	$8^{\prime \prime}$	$8_{\frac{1}{2}}{ }^{\prime \prime}$	$9^{\prime \prime}$	$9 \frac{1}{1}{ }^{\prime \prime}$	$10^{\prime \prime}$	$10^{\frac{1}{2}}{ }^{\prime \prime}$	11 "	11 ${ }^{\prime \prime}$	12^{\prime}
	1.70	1.81	1.91	2.02	2.13	2.23	2.34	2.45	2.55
	3.40	3.61	3.82	4.04	4.25	4.46	4.68	4.89	5.10
$\frac{3}{16}$	5.10	5.42	5.74	6.06	6.38	6.70	7.02	7.32	7.65
$\frac{1}{4}$	6.80	7.22	7.65	8.08	8.50	8.92	9.34	9.78	10.20

$\begin{array}{lll} \frac{3}{8} & 7 \\ \frac{1}{2} & 7 \\ 16 \end{array}$	$\begin{array}{r} 8.50 \\ 10.20 \\ 11.90 \\ 13.60 \end{array}$	$\begin{array}{r} 9.03 \\ 10.84 \\ 12.64 \\ 14.44 \end{array}$	$\begin{array}{r} 9.56 \\ 11.48 \\ 13.40 \\ 15.30 \end{array}$	$\begin{aligned} & 10.10 \\ & 12.12 \\ & 14.14 \\ & 16.16 \end{aligned}$	$\begin{aligned} & 10 . \\ & 12 . \\ & 14 . \\ & 17 . \end{aligned}$	$\begin{aligned} & 11.16 \\ & 13.39 \\ & 15.62 \\ & 17.85 \end{aligned}$	$\begin{aligned} & 11.68 \\ & 14.0 \\ & 16.3 \\ & 18.7 \end{aligned}$		$\begin{aligned} & 12.75 \\ & 15.30 \\ & 17.85 \\ & 20.40 \end{aligned}$
	15					20.08	21	22.00	
			19.13	20.19	21.25	,	3.	4.	5.50
			21.04	22.21	23		5.	6.88	
$\frac{3}{4}$	20.40	21.68	22.96	24.23		26.78	28.05	29.33	
							30.	1.76	
							2.		
	25.50	.	8. 69	30.28	1.	33.	35.	36.	5
1	27.20	28.90	30.60	32.30	34.0	35.	37.40	39.	80
$1 \frac{1}{16}$	28.90	30.7	32.52	34.32	36.12		39.7	1.	
	30.60	32.52	34.43	36.34	38.25	40.	42.0	4.	45.90
	32.30	4.3	36.34	38.36	40.38	42.4	44.4	46.	45
$1 \frac{1}{4}$	34.00	36.12	38.26	40.37	42.50	44.63	46.76		
	35.70	37	0.16	42.40		46.86	49.08	51.32	.5\%
	37.4	39.7	42.08	44.41	46.7	59.0	51.42	3.7	6.10
$1 \frac{7}{16}$	39.10	41.54	44.00	46.44	48.88	51.32	53.76	56.2	8.65
	40.80	43.35	45.90		51.00	53.55	56.10	58.65	
	42.5	45.	47.82	50.48	53.	55.7	58.42	61.1	63.75
,	44.20	46.96	49.73	52.49	55.2	58.02	260.78	63.54	66.30
$1 \frac{1}{16}$	45.90	48.76	51.64	454.51	57.38	80.24	43.10	65.98	68.85
$1 \frac{3}{4}$	47.60	50.5	53.56	56.53	59.50	062.48	65.45	68.4	71.40
	49.30	52.38	55.46	558.54	61.62	64.70	67.80	70.86	73.95
17	51.00	54.20	57.38	60.56	63.75	56.94	40.12	73.31	76.50
$1 \frac{15}{16}$	52.70	56.00	59.29	62.58	65.88	8'69.18	872.46	75.76	79.05
	54.40	057.80	1.20	64.60	68.00	0,71.40	74.80	78.20	81.60

274 THE PASSAIC ROLLING MILL COMPANY．

$\begin{gathered} \text { Ei } \\ 0 \\ k=1 \end{gathered}$	＝it	－\％\％¢ ¢			둥ำ $\alpha \propto \propto \circ$
	三io	F\％\％¢ ¢ ¢	¢¢ ¢0\％	88 ¢ r－iri	か®
	淤	8ㅇㅋㅜ․․․			89880
	$\stackrel{\text { io }}{\text { Q }}$	$\%$ \％\％ 150.2	ผ－		
	Ė	$\begin{aligned} & 0.8 \% \\ & \text { Mo } \\ & \text { in } \end{aligned}$			
$\xrightarrow{4}$	¢ั入	$\begin{aligned} & 80000 \\ & \text { - } 9.0 .0 \end{aligned}$			
	ล̀	$\begin{aligned} & \infty \times 0.0 \\ & 0.0 \\ & -\infty=0 \end{aligned}$	民OR品 $\mathfrak{\infty} \dot{\mathfrak{N}}$		
\hat{A}_{1}	$\stackrel{\rightharpoonup}{\text { N }}$		$\begin{aligned} & \% N-8 \\ & \% ~ N O M \end{aligned}$		
$$	¿̀	品会荮 －か 玉 玉	下웅ㅇ 	内侖志 $\underset{\sim O}{\circ} \dot{O}$	$\begin{aligned} & 120 \% 8 \\ & \text { in in io } \end{aligned}$
	－				${ }^{\infty}{ }^{2} \times 108$ ～i
	$\stackrel{\square}{\square}$	$\begin{aligned} & 51900 \\ & \therefore=0 \\ & \therefore=10 \end{aligned}$	$\begin{aligned} & \text { Nos } \\ & \text { So } \\ & \text { So } \\ & \hline 10 \end{aligned}$		
国	－				
E	$\stackrel{\square}{7}$	$\begin{aligned} & 9808 \\ & \therefore 0.80 \\ & \therefore 0.0 \end{aligned}$			
荷	$\stackrel{\text { in }}{\sim}$				
$\begin{aligned} & \text { 覑 } \\ & \text { E } \\ & \text { H } \end{aligned}$	シ				
	$\stackrel{\text { ¢ }}{\sim}$	象会曷 ヘぃ \rightarrow	－\quad が $\stackrel{9}{9} 9$		
	$\stackrel{\text { N}}{\text { N }}$		$\begin{aligned} & 080 \\ & \text { in } \\ & \text { in } \end{aligned}$		
		H° $+\infty \quad-1+$	成 ल） m	ato olt	 No -

		$\therefore 10 \%$ \％			$\begin{array}{lll} \rightarrow 0 & 00 & 12 \\ 0 \\ \sim & 10 & 10 \\ \hline \end{array}$
	\pm	\＆－¢ ¢			
	$\begin{aligned} & \Sigma \\ & \vdots \\ & i+1 \end{aligned}$	ف． 1% ¢ 0_{0}^{0}			$\stackrel{20}{2} \mathrm{O}$ $\therefore \therefore \therefore \therefore \div$
	$\stackrel{\square}{\square}$	¢－¢ ¢	$\underbrace{\infty}_{i} \underbrace{\infty}_{0} \text { 刁 }$		 か ふं ๙๐ ๙
\sum_{0}^{2}	$\begin{aligned} & i+0 \\ & +4 \end{aligned}$			$\begin{aligned} & \infty=0 \\ & \infty \\ & \infty \end{aligned}$	
	$\begin{aligned} & = \\ & \underset{4}{4} \end{aligned}$				$\begin{aligned} & 60 \% \\ & 600 \\ & \hdashline=0 \end{aligned}$
	$\begin{aligned} & \bar{\alpha} \\ & \dot{N} \end{aligned}$			$\begin{aligned} & 6 a \\ & 62=2 \\ & 80 x \\ & 0 x \end{aligned}$	$\begin{aligned} & 620 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
	\bar{i}				
$\xrightarrow[A]{2}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$				
$\underset{\square}{2}$	$\begin{aligned} & \text { è } \\ & \infty \end{aligned}$				
	$\begin{aligned} & = \\ & \text { m } \end{aligned}$				
$\begin{aligned} & \square \\ & E 1 \\ & E 1 \\ & \hline 2 \end{aligned}$	$\begin{aligned} & \bar{\alpha} \\ & \text { è } \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & 0.0 \\ & -0 \end{aligned}$			
	\bar{i}			$\begin{aligned} & 506 \\ & i 80 \\ & i 00 \end{aligned}$	$\begin{aligned} & 0 \text { J J } \\ & 0 \text { Q } \\ & 00 \\ & 0 \end{aligned}$
3	$\begin{aligned} & = \\ & \text { O } \\ & \text { Q } \end{aligned}$				
22	$\stackrel{\infty}{\infty}$				
	$\begin{aligned} & \text { i} \\ & \text { Q } \end{aligned}$				
1	$\begin{aligned} & \overline{0} \\ & \hat{0} \end{aligned}$				
		－	（c）	$e_{\sim \rightarrow \infty}^{k}$	

276 THE PASSAIC ROLLING MILL COMPANY.

THE PASSAIC ROLLING MILL COMPANY． 277

	ごı	成处三皆			To
	ミ	คูु ¢ ¢			
	三－				
	＝		¢ ${ }^{20}$		
0_{0}^{5}	$\begin{aligned} & \bar{\circ} \\ & 0 \\ & 0 \end{aligned}$				
	$\stackrel{\infty}{\infty}$	兂			NLO
$\frac{\square}{7}$	io				
	$\begin{aligned} & \text { ¿̇ } \end{aligned}$				$\begin{gathered} 0 \\ 0 \\ \text { NGO } \\ \text { Gi } \\ \hline \end{gathered}$
$\frac{A_{4}^{2}}{A_{1}}$	$\begin{aligned} & \text { ¿ } \\ & \text { ol } \end{aligned}$			$\begin{array}{lll} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \hline \end{array}$	
$\begin{aligned} & 2 \\ & E+ \\ & E \\ & i \\ & i \end{aligned}$	ì				
	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$				
	－			$\begin{aligned} & 10 \infty 0 \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$	
	－			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
S	－		$\begin{aligned} & 0 \\ & 00 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		
	$\bar{\infty}$		$\begin{aligned} & 0 \\ & 000 \\ & 000 \\ & 0 \end{aligned}$		
	\cdots	20\％ \％\％\％ ¢ \％			
	\％o				
		－10	No	－	简

278 THE PASSAIC ROLLING MILL COMPANY.

AREAS OF FLATS.

Thickness in Inches.	$1^{\prime \prime}$	$1 \frac{1}{4}^{\prime \prime}$	$1 \frac{1}{2}^{\prime \prime}$	$14^{\prime \prime}$	$2^{\prime \prime}$	$2 \frac{1}{4}^{\prime \prime}$	$2 \frac{1}{2}^{\prime \prime}$	$2 \frac{3}{4}^{\prime \prime}$	$3^{\prime \prime}$
$\frac{1}{16}$. 063	. 078	. 094	. 109	. 125	141	. 156	. 172	. 188
	. 125	. 156	. 188	. 219	. 250	. 281	. 313	. 344	. 375
$7^{\frac{3}{6}}$. 188	. 234	. 281	. 328	. 375	. 422	. 469	. 516	. 563
$\frac{1}{4}$. 250	. 313	. 375	. 438	. 500	. 563	. 625	. 688	. 750
$\frac{5}{16}$. 313	. 391	. 469	. 547	. 625	. 703	. 781	. 859	. 938
	. 375	. 469	. 563	. 656	. 750	. 844	. 938	1.03	1.13
$\frac{7}{16}$. 435	. 547	. 656	. 766	. 875	. 984	1.09	1.20	1.31
$\frac{1}{2}$. 500	. 625	. 750	. 875	1.00	1.13	1.25	1.38	1.50
	. 563	. 703	. 844	. 984	1.13	1.27	1.41	1.55	1.69
	. 625	. 781	. 938	1.09	1.25	1.41	1.56	1.72	1.88
	. 688	. 859	1.03	1.20	1.38	1.55	1.72	1.89	2.06
$\frac{3}{4}$. 750	. 933	1.13	1.31	1.50	1.69	1.88	2.06	2.25
	. 813	1.02	1.22	1.42	1.63	1.83	2.03	2.23	2.44
$\frac{7}{8}$. 875	1.09	1.31	1.53	1.75	1.97	2.19	2.41	2.63
- $\frac{15}{16}$. 938	1.17	1.41	1.64	1.88	2.11	2.34	2.58	2.81
1	1.00	1.25	1.50	1.75	2.00	2.25	2.50	2.75	3.00
$1 \frac{1}{16}$	1.06	1.33	1.59	1.86	2.13	2.39	2.66	2.92	3.19
$1 \frac{1}{8}$	1.13	1.41	1.69	1.97	2.25	2.53	2.81	3.09	3.38
$1{ }^{\frac{3}{6}}$	1.19	1.48	1.78	2.08	2.38	2.67	2.97	3.27	3.56
1趗	1.25	1.56	1.88	2.19	2.50	2.81	3.13	3.44	3.75
$1 \frac{5}{16}$	1.31	1.64	1.97	2.30	2.63	2.95	3.28	3.61	3.94
$1 \frac{3}{8}$	1.38	1.72	2.06	2.41	2.75	3.09	3.44	3.78	4.13
$1 \frac{7}{16}$	1.44	1.80	2.16	2.52	2.88	3.25	3.59	3.95	4.31
$1 \frac{1}{2}$	1.50	1.88	2.25	2.63	3.00	3.38	3.75	4.13	4.50
$1 \frac{9}{16}$	1.56	1.95	2.34	2.73	3.13	3.52	3.91	4.30	4.69
15.	1.63	2.03	2.44	2.84	3.25	3.66	4.06	4.47	4.88
$1 \frac{1}{1} \frac{1}{6}$	1.69	2.11	2.53	2.95	3.38	3.80	4.22	4.64	5.06
13	1.75	2.19	2.63	3.06	3.50	3.94	4.38	4.81	5.25
$1 \frac{1}{6}$	1.81	2.27	2.72	3.17	3.63	4.08	4.53	4.98	5.44
17	1.88	2.34	2.81	3.28	3.75	4.22	4.69	5.16	5.63
115	1.94	2.42	2.01	3.39	3.88	4.36	4.84	5.33	5.81
2	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00

AREAS OF FLATS.

Thickness, in Inches.	$3 \frac{1}{2}{ }^{\prime \prime}$	$4^{\prime \prime}$	$4 \frac{1}{2}{ }^{\prime \prime}$		$5^{\frac{1}{2}}{ }^{\prime \prime}$	$6^{\prime \prime}$	$6 \frac{1}{2}{ }^{\prime \prime}$	$7{ }^{\prime \prime}$	$7 \frac{1}{\frac{1}{2}}$
$\frac{3}{16}$. 219	. 250	. 281	. 313	. 344	. 375	. 406	. 438	. 469
	. 438	. 500	. 563	. 625	. 688	. 750	. 813	. 875	. 938
	. 656	. 750	. 844	. 938	1.03	1.13	1.22	1.31	1.41
	. 875	1.00	1.13	1.25	1.38	1.50	1.63	1.75	1.88
$\frac{1}{2}^{\frac{7}{16}}$	1.09	1.25	1.41	1.56	1.72	1.88	2.03	2.19	2.34
	1.31	1.50	1.69	1.88	2.06	2.25	2.44	2.63	2.81
	1.53	1.75	1.97	2.19	2.41	2.63	$\stackrel{2}{2} 84$	3.06	3.28
	1.75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75
	1.97	2.25	2.53	2.81	3.09	3.38	3.66	3.94	4.22
	2.19	2.50	2.81	3.13	3.44	3.75	4.06	4.38	4.69
	2.41 2.63	2.75 3.00	3.09 3.38	3.44	3.78 4.13	4.13 4.50	4.47 4.88	4.81 5.25	5.16 5.63
$1^{\frac{7}{8}}{ }_{\frac{15}{18}}^{\frac{15}{18}}$	2.84	3.25	3.66	4.06	4.47	4.88	5.28	5.69	
	3.06	3.50	3.94	4.38	4.81	5.25	5.69	6.13	6.56
	3.28	3.75	4.22	4.69	5.16	5.63	6.09	6.56	7.03
	3.50	4.00	4.50	5.00	5.50	6.00	6.50	7.00	7.50
${ }_{1_{1}^{1 \frac{1}{8}}}^{1_{16}^{\frac{1}{16}}} 1_{1 \frac{3}{16}}$	3.72	4.25	4.78	5.31	5.84	6.38	6.91	7.44	7.97
	3.94	4.50	5.06	5.63	6.19	6.75	7.31	7.88	8.44
	4.16	4.75	5.34	5.94	6.53	7.13	7.72	8.31	8.91
	4.38	5.00	5.63	6.25	6.88	7.50	8.13	8.75	9.38
$\begin{aligned} & 1_{1 \frac{5}{5}}^{16} \\ & 1_{1}^{3} \\ & 1_{1}^{7}{ }^{\frac{7}{6}} \\ & 1_{2} \end{aligned}$	4.59	5.25	5.91	6.56	7.22	7.88	8.53		9.84
	4.81	5.50	6.19	6.88	7.56	8.25	8.94	9.63	10.31
	5.03	5.75	6.47	7.19	7.91	8.63		10.06	10.78
	5.25	6.00	6.75	7.50	8.25	9.00	9.75	10.50	11.25
$\begin{aligned} & 1_{\frac{5}{8}}^{1 \frac{9}{15}}{ }^{1 \frac{11}{16}} \\ & 1_{\frac{3}{4}}^{16} \end{aligned}$	5.47	6.25	7.03	7.81	8.59	9.35	10.16	0.9	11.72
	5.69	6.50	7.31	8.13	8.94	9.75	10.56	11.38	12.19
	5.91	6.75	7.59	8.44	9.28	10.13	10.97	11.81	12.66
	6.13	7.00	7.88	8.75	9.63	10.50	11.38	12.25	13.13
$2_{1^{\frac{1_{1}^{1}}{18}}}^{1_{18}^{15}}$	6.34	7.25	8.16	9.069 .9710 .8811 .7812 .6913 .59					
	6.56	7.50	8.44	9.3810 .3111 .2512 .1913 .1314 .06					
	6.78	7.75	8.72	$\begin{array}{r} 9.6910 .66 \\ 10.0011 .00 \end{array}$		11.63	12.59	13.56	14.53
	7.00	8.00	9.00			12.00	13.001	14.00	15.00

280 THE PASSAIC ROLLING MILL COMPANY.

AREAS OF FLATS.

(Continued.)									
Thickness, in inches.	$8^{\prime \prime}$	$8 \frac{1}{2}^{\prime \prime}$	$9^{\prime \prime}$	$9 \frac{1}{2}^{\prime \prime}$	$10^{\prime \prime}$	$10 \frac{1}{2}{ }^{\prime \prime}$	$11^{\prime \prime}$	$11 \frac{1}{2}^{\prime \prime}$	$12^{\prime \prime}$
$\begin{array}{ll} \frac{1}{8} & \\ & \frac{3}{16} \\ \frac{1}{4} & \end{array}$. 500	. 531	. 563	. 594	. 625	. 656	. 688	. 719	. 750
	1.00	1.06	1.13	1.19	1.25	1.31	1.38	1.44	1.50
	1.50	1.59	1.69	1.78	1.88	1.97	2.06	2.16	2.25
	2.00	2.13	2.25	2.38	2.50	2.63	2.75	2.88	3.00
	2.50	2.66	2.81	2.97	3.13	3.28	3.44	3.59	3.75
	3.00	3.19	3.38	3.56	3.75	3.94	4.13	4.31	4.50
	3.50	3.72	3.94	4.16	4.38	4.59	4.81	5.03	5.25
	4.00	4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00
$\begin{array}{ll}\frac{5}{8} & 16 \\ & \frac{1}{1} \frac{1}{6} \\ \frac{3}{4} & \end{array}$	4.50	4.78	5.06	5.34	5.63	5.91	6.19	6.47	6.75
	5.00	5.31	5.63	5.94	6.25	6.56	6.88	7.19	7.50
	5.50	5.84	6.19	6.53	6.88	7.22	7.56	7.91	8.25
	6.00	6.38	6.75	7.13	7.50	7.88	8.25	8.63	9.00
$\frac{7}{8}$	6.50	6.91	7.31	7.72	8.13	8.53	8.94	9.34	9.75
	7.00	7.44	7.88	8.31	8.75	9.19	9.63	10.06	10.50
	7.50	7.97	8.44	8.91	9.38	9.84	10.31	10.78	11.25
	8.00	8.50	9.00	9.50	10.00	10.50	11.00	11.50	12.00

$1 \frac{1}{6}$	8.50				10	11	11.69	12.22	12.75
	9.00		,	10.69	11	11.81	12.38	12.	13.50
		10.0	10.6	11.28	11.88	12.47	13.06	13.66	14.25
$1 \frac{1}{4}$	10.00	10.63	11.25	11.88	12.50	13.13	13.75	14.38	15.00
1			11.81	12.47	3.	13.78	14.	15	5.75
$1{ }^{3}$	11.0	1.69	12.38	13.06	13.75	14.44	15.13	15.81	16.50
	11.50	2.22	12.94	13.66	14.38	15.09	15.81	16.53	17.25
$1 \frac{1}{2}$	12.00	12.75	13.50	14.25	15.00	15.75	16.50	17.25	18.00
$1{ }^{\frac{9}{6}}$	12.5	13.28	14.06	14.84	15.63	16.41	17.19	17.97	8.75
$1 \frac{5}{8}$	13.0	13.81	14.63	15.44	16.25	17.06	17.88	18.69	19.50
$1 \frac{1}{16}$	13.50	14.34	15.19	16.03	16.88	17.72	18.56	19.41	20.25
$1 \frac{3}{4}$	14.00	14.88	15.75	16.63	17.50	18.38	19.25	20.13	21.00
$1 \frac{1}{1} \frac{3}{6}$	14.50	15.41	16.31	17.22	18.13	19.03	19.94	20.84	21.75
$1 \frac{7}{8}$	15.00	15.94	16.88	17.81	18.75	19.69	20.63	21.56	22.50
$1 \frac{15}{15}$	15.50	16.47	17.44	18.41	19.38	20.34	21.31	22.28	23.25
2	16.00	17.00	18.00	19.00	120.00	21.00	22.00	23.00	24.00

AREAS,

In Square Inches, for One Hole,
To be deducted from gross area of rivetted plates or shapes to obtain net area.

Thickness of Metal, inches.	Diameter of Hole.										
	$\frac{1}{2}{ }^{\prime \prime}$	${ }_{16}{ }^{\prime \prime}{ }^{\prime \prime}$	$\frac{5}{8}{ }^{\prime}$	$\frac{1181}{}{ }^{\prime \prime}$	$\frac{3}{4}{ }^{\prime \prime}$	${ }_{1}^{13}$	${ }_{8}^{71}$	$\frac{15}{16}$	1	$1 \frac{1}{16}$	$1{ }^{\frac{1}{8}}{ }^{\prime \prime}$
$\frac{1}{16}$. 03	. 04	. 04	. 04	. 05	. 05	. 05	. 06	. 06	. 07	. 07
$\frac{1}{8}$. 06	. 07	. 08	. 09	. 09	. 10	. 11	. 12	. 13	. 13	. 14
$7^{3} 6$. 09	. 11	. 12	13	. 14	15)	. 16	. 18	. 19	. 20	. 21
$\frac{1}{4}$. 13	. 14	. 16	. 17	. 19	. 20	. 22	. 23	. 25	27	28
$\frac{5}{16}$	16	18	. 20	21	. 23	25	. 27	. 29	. 31	. 33	. 35
	. 19	. 21	. 23	. 26	. 28	. 30	. 33	. 35	. 38	. 40	. 42
	. 22	. 25	. 27	. 30	. 33	. 36	. 38	. 41	. 44	. 46	. 49
,	. 25	. 28	. 31	. 34	. 38	. 41	. 44	. 47	. 50	. 53	56
	. 28	32	. 35	. 39	. 42	. 46	49	. 53	56	60	63
	. 31	. 35	. 39	. 43	. 47	. 51	. 55	. 59	. 63	. 66	
$\frac{11}{16}$. 34	. 39	. 43	. 47	. 52	. 56	. 60	. 64	. 69	. 73	. 77
$\frac{3}{4}$. 38	. 42	. 47	. 52	. 56	. 61	. 66	. 70	. 75	. 80	. 84
			. 51		. 61						
	.44	. 49	. 55	. 60	$.66$. 71	. 77	$.82$. 93	. 93
	. 47	. 53	. 59	. 64	. 70	. 76	. 82		. 94	1.00	1.05
1	. 50	. 56	. 63	. 69	. 75	. 81	. 88	. 94	1.00	1.06	1.13
$1 \frac{1}{16}$. 53	. 60	. 66	73	. 80	. 86		1.00	1.06	. 13	1.20
$1 \frac{1}{8}$. 56	. 63	. 70	. 77	. 84			1.05		1.20	1.27
$1 \frac{3}{6}$. 59	. 67	. 74	. 82			1.04	1.11		1.26	1.34
$1 \frac{1}{4}$. 63	. 70	. 78	. 86	. 94	1.02		1		1.33	
1_{15}^{5}	. 66	. 74	. 82		. 98	1.07		1.23	1.31	1.39	1.48
$1{ }^{3}$. 69	. 77	. 86		.03,	1.12	1.20	1.29	1.38	1.46	1.55
$1{ }^{2} \frac{7}{6}$. 72	. 81			. 08	1.17	1.26	1.35	1.44	1.53	1.62
12 $\frac{1}{2}$. 75	84		. 03	. 13	1.22	1.31	1.41	1.50	1.59	1.69
$1 \frac{9}{16}$. 78			.	. 17	. 2					. 76
	. 81		1.02	1.12	1.22	1.32	1.4	1.52	1.63	1.73	1.83
$11 \frac{11}{16}$. 84	. 95	1.05	1.16	1.27	1.37	. 4	1.58	1.69	1.79	1.90
$1 \frac{3}{4}$. 88	. 98	1.09	1.20	1.31	1.42	1.53	1.64	1.75	1.86	1.97
1_{1}^{13}	. 91	1.02			1.31	.		1.		1.9	. 04
17	-94	1.05	1.17	. 2	1.41	1.5	1.64	1.7	1.88	1.99	2.11
${ }^{\frac{1}{15}}$		1.0	21	1.3	1.45	. 5	1.7	1.8	1.	2.06	2.18
2		1.1									

When holes are punched the diameter of the hole should be taken as $\frac{1}{x}$ " greater than the diameter of the rivet or bolt. For drilled holes the diameter may be taken as $\frac{1}{16}{ }^{\prime \prime}$ greater than rivet or bolt.

```
282 THE PASSAIC ROLLING MILL COMPANY.
```


Weight per Square Foot of Sheets of Wrought Iron, Steel, Copper, and Brass.

THICKNESS BY BIRMINGHAM GAUGE.

No. of Gauge.	Thickness in Inches.	Iron.	Steel.	Copper.	Brass.
0000	. 454	18.22	18.46	20.57	19.43
000	. 425	17.05	17.28	19.25	18.19
00	. 38	15.25	15.45	17.21	16.26
0	. 34	13.64	13.82	15.40	14.55
1	. 3	12.04	12.20	13.59	12.84
2	. 284	11.40	11.55	12.87	12.16
3	. 259	10.39	10.53	11.73	11.09
4	. 238	9.55	9.68	10.78	10.19
5	. 22	8.83	8.95	9.97	9.42
6	. 203	8.15	8.25	9.20	8.69
7	. 18	7.22	7.32	8.15	7.70
8	. 165	6.62	6.71	7.47	7.06
9	. 148	5.94	6.02	6.70	6.33
10	. 134	5.38	5.45	6.07	5.74
11	. 12	4.82	4.88	5.44	5.14
12	. 109	4.37	4.43	4.94	4.67
13	. 095	3.81	3.86	4.30	4.07
14	. 083	3.33	3.37	3.76	3.55
15	. 072	2.89	2.93	3.26	3.08
16	. 065	2.61	2.64	2.94	2.78
17	. 058	2.33	2.36	2.63	2.48
18	. 049	1.97	1.99	2.22	2.10
19	. 042	1.69	1.71	1.90	1.80
20	. 035	1.40	1.42	1.59	1.50
21	. 032	1.23	1.30	1.45	1.37
22	. 028	1.12	1.14	1.27	1.20
23	. 025	1.00	1.02	1.13	1.07
24	. 022	. 883	. 895	1.00	. 942
25	. 02	. 803	. 813	. 906	. 856
26	. 018	. 722	. 732	. 815	. 770
27	. 016	. 642	. 651	.725	. 685
28	. 014	. 562	. 569	. 634	. 599
29	. 013	. 522	. 529	. 589	. 556
30	. 012	. 482	. 488	. 544	. 514
31	. 01	. 401	. 407	. 453	. 428
32	. 009	. 361	. 366	. 408	. 385
33	. 008	. 321	. 325	. 362	. 342
34	. 007	. 281	. 285	. 317	. 300
35	. 005	. 201	. 203	. 227	. 214
Specific Gravity . Weight Cubic ft. Weight Cubic in		7.704	7.806	8.698	8.218
		481.25	487.75	543.6	513.6
		. 2787	. 2823	. 3146	. 2972

THE PASSAIC ROLLING MILI, COMPANY. 283

Weight per Square Foot of Sheets of Wrought Iron, Steel, Copper, and Brass.

THICKNESS BY AMERICAN GAUGE.

No. of Gauge.	Thickness in Inches.	Iron.	Steel.	Copper.	Brass.
0000	. 46	18.46	18.70	20.84	19.69
000	. 4096	16.44	16.66	18.56	17.53
00	. 3648	14.64	14.83	16.53	15.61
0	. 3249	13.114	13.21	14.7\%	13.90
1	. 2893	11.61	11.76	13.11	12.38
2	. 2576	10.34	10.48	11.67	11.03
3	.2294	9.21	9.33	10.39	9.82
4	. 2043	8.20	8.31	9.26	8.74
5	. 1819	7.30	7.40	8.24	7.79
6	. 1620	6.50	6.59	7.34	6.93
7	. 1443	5.79	5.87	6.54	6.18
8	. 1285	5.16	5.22	5.82	5.50
9	. 1144	4.59	4.65	5.18	4.90
10	. 1019	4.09	4.14	4.62	4.36
11	. 0907	3.64	3.69	4.11	3.88
12	. 0808	3.24	3.29	3.66	3.46
13	.0720	2.89	2.93	3.26	3.08
14	. 0641	2.57	2.61	2.90	2.74
15	. 0571	2.29	2.32	2.59	2.44
16	. 0508	2.04	2.07	2.30	2.18
17	. 0453	1.82	1.84	2.05	1.94
18	. 0403	1.62	1.64	1.83	1.73
19	. 0359	1.44	1.46	1.63	1.54
20	. 0320	1.28	1.30	1.45	1.37
21	.0285	1.14	1.16	1.29	1.22
22	. 0253	1.02	1.03	1.15	1.08
23	. 02226	. 906	. 918	1.02	. 966
24	. 0201	. 807	. 817	. 911	. 860
25	. 0179	. 718	. 728	. 811	. 766
26	. 0159	. 640	. 648	. 722	. 682
27	. 0142	. 570	. 577	. 643	. 608
28	. 0126	. 507	. 514	. 573	. 541
29	. 0113	. 452	. 458	. 510	. 482
30	. 0100	. 402	. 408	. 454	. 429
31	.00=9	. 358	. 363	. 404	. 382
32	. 0080	. 319	. 323	. 360	. 340
33	. 0071	. 284	. 288	. 321	. 303
34	. 0063	. 253	. 256	. 286	. 270
35	. 0056	. 225	. 228	. 254	. 240

As there are many gauges in use differing from each other, and even the thicknesses of a certain specified gauge, as the Birmingham, are not assumed the same by all manufacturers, orders for sheets and wire should always state the weight per \square foot or the thickness in thousandths of an inch.

284 THE PASSAIC ROLLING MILL COMPANY.

DIFFERENT STANDARDS FOR WIRE GAUGE IN USE IN THE U. S.

DIMENSIONS IN DECIMAI. PARTS OF AN INCH.

Number of Wire Gauge.	American, or Brown \& Sharpe.		Washburn \& Moen Mnfg. Сo., W orcester, Mass.	Trenton Iron Co., Trenton, N. J.	United States Standard.	Old English, from Brass Mfrs. List.
000000			. 46		. 46875	
00000			. 43	. 45	. 4375	
0000	. 46	. 454	. 393	. 4	. 40625	
000	. 40964	. 425	. 362	. 36	. 375	
00	. 3648	. 38	. 331	. 33	. 34375	
0	. 32495	. 34	. 307	. 305	. 3125	
1	. 2893	. 3	. 283	. 285	. 28125	
2	. 25763	. 284	. 263	. 265	. 26563	
3	. 22942	. 259	. 244	. 245	. 25	
4	. 20431	. 238	. 225	. 225	. 23438	
5	. 18194	. 22	. 207	. 205	. 21875	
6	.16:02	. 203	. 192	. 19	. 20313	
7	. 14428	. 18	. 177	. 175	. 1875	
8	. 12849	. 165	. 162	. 16	. 17188	
9	. 11443	. 148	. 148	. 145	. 15625	
10	. 10189	. 134	. 135	. 13	. 14063	
11	. 090742	. 12	. 12	. 1175	. 125	
12	. 080808	. 109	. 105	. 105	. 10938	
13	. 071961	. 095	. 092	. 0925	. 09375	
14	. 064034	. 083	. 08	. 08	. 07813	. 083
15	. 057068	. 072	. 072	. 07	. 07031	. 072
16	.05082	. 065	. 063	. 061	. 0625	. 065
17	. 045257	. 058	. 054	. 0525	. 05625	. 058
18	. 040303	. 049	. 047	. 045	. 05	. 049
19	. 03539	. 042	. 041	. 039	. 04375	. 04
20	. 031961	. 035	. 035	. 034	. 0375	. 035
21	. 028462	. 032	. 032	. 03	. 03438	. 0315
22	. 025347	. 028	. 028	. 027	. 03125	. 0295
23	. 022571	. 025	. 025	. 024	. 02813	.027
24	. 0201	. 022	. 023	. 0215	. 025	. 025
25	. 0179	. 02	. 02	. 019	. 02188	. 023
26	. 01594	. 018	. 018	. 018	. 01875	. 0205
27	. 014195	. 016	. 017	. 017	. 01719	. 01875
28	. 012641	. 014	. 016	. 016	. 01563	. 0165
29	. 011257	. 013	. 015	. 015	. 01406	. 0155
30	. 010025	. 012	. 014	. 014	. 0125	. 01375
31	. 008928	. 01	. 0135	. 013	. 01094	. 01225
32	. 00795	. 009	. 013	. 012	. 01016	. 01125
33	. 00708	. 008	. 011	. 011	. 00938	. 01025
34	. 006304	. 007	. 01	. 01	. 00859	. 0095
35	. 005614	. 005	. 0095	. 009	. 00781	. 009

WIRE-Iron, Steel, Copper, Brass.

 Weight of 100 Feet in Pounds.BIRMINGHAM WIRE GAUGE.

No. of Gauge.	PER 100 LINEAL FEET.			
	Iron.	Steel.	Copper.	Brass.
0000	54.62	55.13	62.39	58.93
000	47.86	48.32	54.67	51.64
00	38.27	38.63	43.71	41.28
0	30.63	30.92	34.99	33.05
1	23.85	24.07	27.24	25.73
2	21.37	21.57	24.41	23.06
3	17.78	17.94	20.3	19.18
4	15.01	15.15	17.15	16.19
5	12.82	12.95	14.65	13.84
6	10.92	11.02	12.47	11.78
7	8.586	8.667	9.807	9.263
8	7.214	7.283	8.241	7.783
9	5.805	5.859	6.63	6.262
10	4.758	4.803	5.435	5.133
11	3.816	3.852	4.359	4.117
12	3.148	3.178	3.596	3.397
13	2.392	2.414	2.732	2.58
14	1.826	1.843	2.085	1.969
15	1.374	1.387	1.569	1.482
16	1.119	1.13	1.279	1.208
17	. 8915	. 9	1.018	. 9618
18	. 6363	. 6423	. 7268	. 6864
19	. 4675	. 472	. 534	. 5043
20	. 3246	. 3277	. 3709	. 3502
21	. 2714	. 274	. 31	. 2929
22	. 2079	. 2098	. 2373	.2241
23	. 1656	. 1672	. 1892	. 1788
24	. 1283	. 1295	. 1465	. 1384
25	. 106	. 107	. 1211	. 1144
26	. 0859	. 0867	. 0981	. 0926
27	. 0678	. 0685	. 0775	. 0732
28	. 0519	. 0524	. 0593	. 056
29	. 0448	. 0452	. 0511	. 0483
30	. 0382	. 0385	. 0436	. 0412
31	. 0265	. 0267	. 0303	. 0286
32	. 0215	. 0217	. 0245	. 0231
33	. 017	. 0171	. 0194	. 0183
34	. 013	. 0131	. 0148	. 014
35	. 0066	. 0067	. 0076	. 0071
36	. 004 ?	.0043	. 0048	. 0046

LAP-WELDED AMERICAN CHARCOAL IRON BOILER TUBES.

 TABLES OF STANDARD SIZES.MORRIS, TASKER \& CO.

		$\begin{aligned} & \dot{\sim} \\ & \stackrel{y}{U} \\ & \stackrel{y}{u} \\ & \stackrel{y}{E} \end{aligned}$						范	
Inch	Inch.	Inch.	Inch.	Inch.	F	Fe	Inch.	Inch.	Lbs.
1	0.856	0.072	3.142	2.689	4.460	3.819	0.575	0.785	0.708
$11 / 4$	1.106	0.072	3.927	3.474	3.455	3.056	0.960	1.227	0.9
11/2	1.334	0.083	4.712	4.191	2.863	2.547	1.396	1.767	1.250
13/4	1.560	0.095	5.498	4.901	2.448	2.183	1.911	2.405	1.665
2	1.804	0.098	S. 283	5.667	2.118	1.909	2.556	3.142	1.981
$21 / 4$	2.054	0.098	「. 069	6.484	1.850	1.698	3.314	3.976	2.238
$21 / 2$	2.283	0.109	7.854	7.172	1.673	1.528	4.094	4.909	2.755
$23 / 4$	2.533	0.109	8.639	7.957	1.508	1.390	5.039	5.940	3.045
3	2.783	0.109	9.425	8.743	1.373	1.273	6.083	7.069	3.333
$3 \mathrm{I} / 4$	3.012	0.119	10.210	9.462	1.268	1.175	7125	8.296	3.958
$31 / 2$	3.262	0.119	10.995	10.248	1.171	1.091	8.357	9.621	4.272
$33 / 4$	3.512	0.119	11.781	11.033	1.088	1.018	9.687	11.045	4.590
4	3.741	0.130	12.566	11.753	1.023	0.955	10.992	12.566	5.320
$41 / 2$	4.241	0.130	14.137	13.323	0.901	0.849	14.126	15.904	6.010
5	4.72	0.140	15.708	14.818	0.809	0.764	17.497	19.635	7.226
6	5.699	0.151	18.849	17.904	0.670	0.637	25.509	28.274	9.346
7	6.657	0.172	21.991	20.914	0.574	0.545	34.805	38.484	12.435
8	7.636	0.182	25.132	23.989	0.500	0.478	45.795	50.265	15.109
9	8.615	0.193	28.274	27.055	0.444	0.424	58.291	63.617	18.002
10	9.573	0.214	31.416	30.074	0.399	0.382	71.975	78.540	22.19

WROUGHT-IRON WELDED TUBES.
EXTRA STRONG.

1/8	. 405	100		205	
1/4	. 54	. 123		. 294	
$3 / 8$. 675	. 127		. 421	
1/2	. 84	. 149	. 298	. 542	. 244
$3 / 4$	1.05	. 157	. 314	.736	. 422
1	1.315	. 182	. 364	. 951	. 587
11/4	1.66	. 194	. 388	1.272	. 884
$11 / 2$	1.9	. 203	. 406	1.494	1.088
2	2.375	221	. 442	1.933	1.491
$21 / 2$	2.875	280	. 560	2.315	1.755
3	3.5	304	. 608	2.892	2.284
$31 / 2$	4.	. 321	. 642	3.358	2.716
4	4.5	. 341	. 682	3.818	3.136

288 THE PASSAIC ROLIING MILL COMPANY.

SPIKES, NAILS AND TACKS.

STANDARD STEEL WIRE NAILS.
STEEL WIRE SPIKES.

Sizes.	Length.	Common.		Finishing.		TEEL WIRE SPIKES.		
		Diam., inches.	No. per pound.	Diam., inches.	No. per pound.	Length.	Diam., inches.	No. per pound.
2 d	$1^{\prime \prime}$. 0524	1060	. 0453	1558	$3^{\prime \prime}$. 1620	41
3 d	$1{ }^{1 / 1}$. 0588	640	. 0508	913	$3{ }^{\frac{1}{2}}{ }^{\prime \prime}$. 1819	30
4 d	1/1"	.0720	380	. 0508	761	$4^{\prime \prime}$. 2043	23
5 d	$1^{3 / \prime}$.0764	275	. 0571	500	$4_{2}^{1 / 1}$. 2294	17
6 d	$2^{\prime \prime}$. 0808	210	. 0641	350	$5^{\prime \prime}$. 2576	13
7 d	$2{ }^{1 \prime}$. 0858	160	. 0641	315	$5 \frac{1}{2}^{\prime \prime}$. 2893	11
8 d	2 ${ }^{\prime \prime}$. 0935	115	. 0720	214	$6^{\prime \prime}$. 2893	10
9 d	$23^{\prime \prime}$. 0963	93	.0720	195	$6{ }^{1 / 1}$. 2249	$7 \frac{1}{2}$
10d	$3^{\prime \prime}$. 1082	77	. 0808	137	$7^{\prime \prime}$. 2249	7
12d	$3{ }^{1 / 1}$. 1144	60	. 0808	127	$8^{\prime \prime}$. 3648	5
16d	$3{ }^{1 \prime}$. 1285	48	. 0907	90	$9^{\prime \prime}$. 3648	4 $\frac{1}{2}$
20d	$4^{\prime \prime}$. 1620	31	. 1019	62			
30d	$4{ }^{1 / 1}$. 1819	22					
40 d	$5^{\prime \prime}$. 2043	17					
50d	$5 \frac{11}{}{ }^{\prime \prime}$. 2294	13					
60d	$6^{\prime \prime}$.2576	11					

WOOD SCREWS.

No.	Diam.								
0	.056	6	.135	12	.215	18	.293	24	.374
1	.069	7	.149	13	.228	19	.308	25	.387
2	.082	8	.162	14	.241	20	.321	26	.401
3	.096	9	.175	15	.255	21	.334	27	.414
4	.109	10	.188	16	.268	22	.347	28	.427
5	.122	11	.201	17	.281	23	.361	29	.440
								30	.453

WROUGHT SPIKES.

Number to a keg of 150 lbs .

L'gth, inch.	$\frac{1}{4}$ inch. No.	$\begin{aligned} & \frac{5}{50} \text { inch. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \frac{3}{8} \text { inch. } \\ & \text { No. } \end{aligned}$	L'gth, inch.	$\begin{aligned} & \frac{1}{4} \text { inch. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \frac{5}{\frac{5}{16}} \mathrm{in} . \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \frac{3}{8} \text { inch. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \frac{7}{16} \text { in. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \frac{1}{2} \text { inch. } \\ & \text { No. } \\ & \hline \end{aligned}$
3	2250			7	1161	662	482	445	306
$3 \frac{1}{2}$	1890	1208		8		635	455	384	256
4	1650	1135		9		573	424	300	240
$4 \frac{1}{2}$	1464	1064		10			391	270	292
5	1380	930	742	11				249	203
6	1292	868	570	12				236	180

THE PASSAIC ROLLING MILL COMPANY. 289

NAILS AND SPIKES.

Size, Length, and Number to the Pound.

ORIINARY.			CLINCH.		FINISHING.		
Size.	Length.	$\begin{aligned} & \text { No. } \\ & \text { to } \mathrm{Lb} \text {. } \end{aligned}$	Length.	$\begin{aligned} & \mathrm{No} \text {. } \\ & \text { to } \mathrm{Lb} \text {. } \end{aligned}$	Size.	Length.	$\begin{aligned} & \text { No. } \\ & \text { to } \mathrm{Lb} \text {. } \end{aligned}$
$2{ }^{\text {d }}$	$1^{\prime \prime}$	800)			1	
3	$1_{4}^{1 / \prime}$	400	2	152	$4^{\text {d }}$	$1{ }^{3}$	384
4	$1{ }^{1 / \prime}$	300	${ }^{1}$	133	5	$1{ }^{\frac{3}{4}}$	256
5	$1_{4}^{3 / \prime}$	200	$2{ }^{\frac{1}{2}}$	92	6	2	204
6	$2^{\prime \prime}$	150	${ }^{2}$	72	8	$2 \frac{1}{2}$	102
7	$2{ }^{1 / 1}$	120	3	60	10	3	80
8	21"	85	$3{ }_{t}$	43	12	$3{ }^{5}$	65
9	$2{ }^{3 / 11}$	75			20	32	46
10	$3^{\prime \prime}$	60	FENCE.				
12	$3_{+}^{1 / 1}$	50	$\begin{aligned} & 2^{\prime \prime} \\ & 2 \\ & 2 \\ & 2 \cdot \\ & 23 \\ & 3 \end{aligned}$	9666565040	CORE.		
16	$3{ }^{\frac{1}{2}}{ }^{\prime \prime}$	40					
20	$4^{\prime \prime}$	20					
30	$4^{1 / \prime}$	16			$6^{\text {d }}$	$\stackrel{2}{2}$	143
40	$5^{\prime \prime}$	14			8	$2{ }_{2}^{1}$	68
50	${ }^{5}{ }^{\frac{1}{2}}$	11			10	${ }^{21}$	60
60		8			12	${ }_{3}$	42
LIGHT.			SPIKES.		30	4	18
$4^{\text {d }}$66			$\begin{aligned} & 3 \\ & 3 \frac{1}{2} \\ & 4 \\ & 4 \frac{1}{2} \\ & 5 \\ & 5 \frac{1}{2} \\ & 6 \end{aligned}$	1915131097			14
	13 $1{ }^{3}$				W H	$2 \frac{1}{2}$	69
	${ }_{2}^{14}$	272 196			W H L	$2{ }^{2}$	72
BRADS.					SLATE.		
$\begin{gathered} 6^{\mathrm{d}} \\ 8 \\ 10 \\ 12 \end{gathered}$	$\stackrel{1}{2}$	163	BOAT.		$\begin{aligned} & 3^{d} \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathbf{1}_{15}^{\prime \prime} \\ & \mathbf{1}_{1}^{7} \\ & \mathbf{1}_{4}^{3} \\ & \mathbf{2}^{6} \end{aligned}$	288
	2	96			244		
	2	74					187
	$3 \frac{1}{x}$	50	1 $\frac{1}{2}$	206			146
TACKS.							

Size.	Length.	$\begin{aligned} & \text { No. } \\ & \text { to } \mathrm{Lb} \text {. } \end{aligned}$	Size.	Length.	No.	Size.	Length.	$\text { to } \stackrel{\text { No. }}{\mathrm{Lb} .}$
1 oz .	8	16000	4 oz .	$\frac{7}{16}$	4000	14 oz .		11.43
$1 \frac{1}{2}$	$\frac{3}{16}$	10666	6	${ }^{1}{ }^{6}$	2666	16		1000
2		8000	8	$5{ }^{6}$	2000	18	15	888
$2 \frac{1}{2}$		6400	10		1600	50	$1{ }^{16}$	800
3	$\frac{3}{8}$	5333	12		1333.	22	$1 \frac{1}{16}$	727

WINDOW GLASS.

Number of Lights per Box of 50 Feet.

Inches.	No.	Inches.	No.	Inches.	No.	Inches.	No.
6×8	150	12×18	33	16×44	10	26×32	9
79	115	1220	30	1820	20	$26 \quad 34$	8
810	90	1222	27	1822	18	2636	8
811	82	1224	25	1824	17	$26 \quad 40$	7
$8 \quad 12$	75	$12 \quad 26$	23	$18 \quad 26$	15	$26 \quad 42$	7
813	70	1228	21	1828	14	$26 \quad 44$	6
814	64	1230	20	1830	13	$26 \quad 48$	6
815	60	1232	18	1832	13	$26 \quad 50$	6
816	55	1234	17	1834	12	$26 \quad 54$	5
911	72	1314	40	18 36	11	$26 \quad 58$	5
912	67	1316	35	1838	11	$28 \quad 30$	9
913	62	1318	31	1840	10	$28 \quad 32$	8
914	57	1320	28	1844	9	$28 \quad 34$	8
915	53	1322	25	$20 \quad 22$	16	$28 \quad 36$	7
916	50	1324	23	$20 \quad 24$	15	2838	7
917	47	1326	21	$20 \quad 26$	14	2840	6
918	44	1328	19	$20 \quad 28$	13	2844	6
$9 \quad 20$	40	1330	18	$20 \quad 30$	12	2846	6
1012	60	1416	32	$20 \quad 32$	11	$28 \quad 50$	5
1013	55	1418	29	2034	11	2852	5
1014	52	1420	26	$20 \quad 36$	10	2856	4
$10 \quad 15$	48	1422	23	$20 \quad 38$	9	$30 \quad 36$	7
$10 \quad 16$	45	1424	22	$20 \quad 40$	9	$30 \quad 40$	6
1017	42	1426	20	$20 \quad 44$	8	3042	6
$\begin{array}{ll}10 & 18\end{array}$	40	1428	18	$20 \quad 46$	8	$30 \quad 44$	5
1020	36	1430	17	$20 \quad 48$	8	3046	5
$10 \quad 22$	33	1432	16	$20 \quad 50$	7	$30 \quad 48$	5
$10 \quad 24$	30	1434	15	$20 \quad 60$	6	$30 \quad 50$	5
$10 \quad 26$	28	1436	14	$22 \quad 24$	14	$30 \quad 54$	4
$10 \quad 28$	26	$14 \quad 40$	13	$22 \quad 26$	13	$30 \quad 56$	4
$10 \quad 30$	24	1444	11	2228	12	3060	4
1032	22	1518	27	2230	11	3242	5
$10 \quad 34$	21	1520	24	2232	10	3244	5
1113	50	1522	22	2234	10	3246	5
1114	47	$15 \quad 24$	20	$22 \quad 36$	9	3248	5
1115	44	1526	18	2238	9	3250	4
1116	41	$15 \quad 28$	17	2240	8	3254	4
1117	39	1530	16	2244	8	3256	4
1118	36	1532	15	2246	7	3260	4
1120	33	1018	25	$22 \quad 50$	7	$34 \quad 40$	5
1122	30	1620	23	$24 \quad 28$	11	3444	5
1124	27	1622	20	$24 \quad 30$	10	$34 \quad 46$	5
1126	25	$16 \quad 24$	19	$24 \quad 32$	9	$34 \quad 50$	4
1128	23	1626	17	2436	8	3452	4
1130	21	1628	16	$24 \quad 40$	8	3456	4
1132	20	1630	15	$24 \quad 44$	7	3644	5
1134	19	1632	14	$24 \quad 46$	7	$36 \quad 50$	4
1214	43	1634	13	$2 t \quad 48$	6	3656	4
1215	40	1636	12	2 ± 50	6	3660	3
1216	38	1638	12	2454	5	3664	3
1217	35	1640	11	2 ± 56	5	4060	3

ROOFING SLATE.

General Rule for the Computation of Slate.

A square of slating is 100 sq . ft . of finished roofing. Slating is usually laid so that the third slate laps the first slate by three inches. To compute the number of slates, of a given size, required to cover a square of roof; subtract three inches from the length of the slate, multiply the remainder by the width of the slate and divide by 2 ; the result is the number of sq. ins. of roof covered per slate; divide 14,400 (the number of sq. ins. in a square) by the number so found, and the result will be the number of slates required for a square.

Weight per Cubic Foot, - 174 Pounds.

Weight per Square Foot.

Thickness......	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{3}{4}$
Weight.......	1.81	1 inch.					

Table of Sizes and Number of Slate in One Square.

Size in Inches.	No. of Slate in Square.	Size in Inches.	No. of Slate in Square.	Size in Inches.	No. of Slate in Square.
6×12	533	8×16	277	12×20	141
712	457	$9 \quad 16$	246	1420	121
812	400	1016	221	1122	137
$9 \quad 12$	355	1216	184	1222	126
1012	32 C	$9 \quad 18$	213	14 22	108
1212	265	1018	192	1224	114
714	374	1118	174	1424	98
814	327	1218	160	1624	86
$9 \quad 14$	291	1418	137	1426	89
1014	261	$10 \quad 20$	169	1626	78
$12 \quad 14$	218	1120	154		

```
992 THE PASSAIC ROLLING MILL COMPANY.
```


CAPACITY OF CISTERNS OR TANKS,

In Gallons, for Each Foot in Depth.

Diameter in Feet.	Gallons.	Diameter in Feet.	Gallons.
2.	23.5	9.	475.87
2.5	36.7	9.5	553.67
3.	52.9	10.	587.5
3.5	71.96	11.	710.9
4.	94.02	12.	846.4
4.5	119.	13.	992.9
5.	146.8	14.	1,151.5
5.5	177.7	15.	1,321.9
6.	211.6	20.	2,350.0
6.5	248.22	25.	3,670.7
7.	287.84	30.	5,287.7
7.5	330.48	35.	7,189.
8.	376.	40.	9,367.2
8.5	424.44	45.	11,893.2

The American standard gallon contains 231 cubic inches, or $81 / 3$ pounds of pure water. A cubic foot contains 62.3 pounds of water, or 7.48 gallons. Pressure per square inch is equal to the depth or head in feet multiplied by 433 . Each 27.72 inches of depth gives a pressure of one pound to the square inch.

SKYLIGHT AND FLOOR GLASS.

Weight per Cubic Foot, - 156 Pounds.

Weight per Square Foot.

Thickness......	$\frac{1}{8}$	$\frac{3}{16}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	1 inch.
Weight........	1.622 .43	3.254 .886 .50	8.13	9.75	13 lbs.			

FLAGGING.

 Weight per Cubic Foot, - 168 Pounds.Weight per Square Foot.

Thickness.......	1	2	3	4	5	6	7	8 inch.
Weight $\ldots \ldots .$.	14	28	42	56	70	84	98	112 lbs.

NOTES ON BRICKWORK.

In ordinary brickwork, one cubic foot of wall will require 2I bricks of $8 \mathrm{in} . \times 21 / 2 \mathrm{in} . \times 31 / 2 \mathrm{in}$.

For 1000 ordinary bricks is required I barrel of good lime, 2 cartloads of ordinary sharp sand.

One brick as above weighs 4 lbs., dry; if perfectly soaked in water, 5 lbs . It will absorb I lb . or one pint of water.

Edgewise arches will require about 7 bricks per square foot of floor, and endwise arches will require about 14 bricks of the size given above.

For \mathbf{I} cubic yard of concrete is required \mathbf{I} barrel of cement, 2 barrels of good sharp sand, I cubic yard of broken stone.

TRANSVERSE STRENGTH OF BUILDING STONES.

$b=$ width of stone, in inches.
$d=$ thickness of stone, in inches.
$l=$ length of span, in inches.
The safe uniformly distributed loads, in tons of 2000 lbs ., for a factor of safety of 10 , can be obtained by multiplying the coefficients, given in the table, by $\frac{b d^{2}}{l}$

Coefficients.
Bluestone............ 0.18
Granite... . . . 0.12
Limestone . 0.10
Sandstone . 0.08
S!ate . 0.36
Thus, a granite lintel, 24 inches wide and 12 inches thick, spanning an opening of 48 inches would sustain a safe load of

$$
\frac{24 \times 144}{48} \times 0.12=8.64 \text { tons }
$$

If the loads are concentrated at the center of the span, the safe load will be one-half the safe uniform load given by the table.

NOTES ON STEEL AND IRON.

Wrought iron weighs 480 lbs . per cubic foot. A bar, I in. square and 3 ft . long, weighs, therefore, exactly io lbs. Hence:

The sectional area, in sq. ins. $=$ the weight per foot $\times \frac{3}{10}$
The weight per foot, in lbs. $=$ sectional area $\times \frac{10}{3}$
Steel weighs 490 lbs . per cubic foot, or 2 per cent. greater than wrought iron. Hence for steel :

The sectional area, in sq. ins. $=$ weight per foot $\div 3.4$
The weight per foot in lbs. $=$ sectional area $\times 3.4$
The melting-points of iron and steel are about as follows:

The welding heat of wrought iron is $2,700^{\circ}$ Fahrenheit.
The contraction of a wrought-iron rod in cooling is about equivalent to $\frac{1}{10000}$ of its length for a decrease of 15° Fahr., and the strain thus induced is about one ton (2240 lbs .) for every square inch of sectional area in the bar.

For a rod of the lengths given below, the contraction will be as follows:

Length of rod in feet..... 10				20	30	40	50	100	150
Contrac'n in inches for 15°									
			. 012	. 024	. 036	. 048	. 060	. 120	180
"	"	150°	. 120	. 240	. 360	. 480	. 600	1.200	1.800
	"	100°	. 080	. 160	. 240	. 320	400	. 800	1.200

Contraction and expansion being equal the pressure per square inch induced by heating or cooling is as follows:

For temperatures varying by 15° Fahr. :

THE PASSAIC ROLLING MILI, COMPANY. 295

timbers.	Tension.		Compression.			Transverse.		Shearing.	
			with	Grain.					
	$\underset{\text { Grain. }}{\text { With }}$	Across	$\begin{aligned} & \text { End } \\ & \text { bearing. } \end{aligned}$	$\left\|\begin{array}{c} \text { Cols. } \\ \text { under } 15 \\ \text { Diams. } \end{array}\right\|$	Crain.	(iber	Modulus of	Grain.	Across
White oak	10,000	2,000	7,000	4,500	2,000	6,000	1,100,000	800	4,000
White pine	7,000	-500	5,500	3,500	800	4,000	1,000,000	400	2,000
Southern, Long-Leaf, or Georgia yellow pine	12,000	600	8,000	5,000	1,400	7,000	1,700,000	600	5,000
Douglass, Oregon and y yellow fir	12,000		8,000	6,000	1,200	6,500	1,400,000	600	
Washington fir or pine ? red fir	10,000					5,000			
Northern or Short-leaf yellow pine	9,000	500	6,000	4,000	1,000	6,000	1,200,000	400	4,000
Red pine	9,000	500	6,000	4,000	800	5,000	1,200,000		
Norway pine	8,000		6,000	4,000	800	4,000	1,200,000		
Canadian (Ottawa) white pine	10,000			5,000				350 400	
Canadian (Ontario) red pine	10,000 8,000			5,000 4,000		5,000 4,000	$1,400,000$ $1,200,000$	400 400	
Spruce and Eastern fir Hemlock	8,000 6,000	500	6,000	4,000 4,000	700 600	4,000 3,500	$1,200,000$ 900,000	450	3,000 2,500
Cypress	6,000		6,000	4,000	700	5,000	900,000		
Cedar .	8,000		6,000	4,000	700	5,000	700,000		1,500
Chestnut	9,000			5,000	900	5,000	1,000,000	600	1,500
California redwood	7,000			4,000	800	4,500	700,000	400	
California spruce			4,000		5,000	1,200,000	

AVERAGE ULTIMATE STRENGTHS OF MATERIALS (Gontimeer).

Elastic
Limit.
6,500
22,000

10,000 888
in 40,000 $000^{6} 9$ 10,000
4,000
6,000 888
Non
N⿵人
Tension.
15,000
40,000 24,000
50,000 50,000
80,000 75,000 32,000 60,000
50,000 66,000 30,000
24,000 36,000 60,000 20,000 15,000
35,000 60,000 60,000 e
Compression.

$(30,000)$
000 OOL
\sum_{8}^{8} 120,000
30,000
$(40,000)$
$000^{6} 08$
......
..... lengths. 10% re 8 แ!

THE PASSAIC ROLLING MILL. COMPANY. 297
(Continued).
MATERIALS

$\begin{array}{c}\text { Modulus of } \\ \text { Elasticity. }\end{array}$
$1,000,000$
$\cdots \cdots \cdots$
$10,000,000$

$30,000,000$ 29,000,000 $29,000,000$

$29,000,000$ 30,000,000 | 8 |
| :--- |
| 8 |
| 8 |
| 0 |
| 0 | 30,000,000 $4,000,000$

$13,000,000$ $13,000,000$ $8,000,000$ 240,000 $1,300,000$ Shearing. $\left|\begin{array}{c}\text { Modulus of } \\ \text { Rupture. }\end{array}\right|$ 888
888
810 4,000
7,000

4,000
3,000
5,000 60,000
48,000
50,000 1,000
4,000
40,000 30,000 33,000 60,000 80,000 1,800
4,000 3,000 5,000 $\underset{\substack{\text { Elastic } \\ \text { Limit. }}}{\text {. }}$ - 7
Tension.
2,000
1,600
40,000
70,000
56,000
70,000
56,000
64,000
ai
64,000
80,000
80,000
120,000
180,000
120,000
180,000
200,000
200,000
300,000
300,000
3,500
$000^{6}{ }^{6}$
5,000
3,000
3,000
4,000
inch.
..... .
)
Compression.
(6,000)
$(6,000)$
$(20,000)$
20,000
10,000
Compression values enclosed in parentheses indicate loads producing 10% reduction in original lengths.
gs
0.10% carbon . .
$\begin{aligned} & 0.15 \%\end{aligned}{ }^{\text {annealed. }}$
unannealed
crucible
for suspension bridges
special tempered
Lead, cast .
" pipe. .
Silver, cast .
Steel, castings
wire,
.
.
.......
cast
Steel, casting
"6
66
66
Tin, cast
Miscellaneous :
Glass, common green
Flax yarn
Glass, com
ass, common
flooring
wire, for
skylights
" wire, for
Leather, ox.
Rope, hemp
Silk, fiber

298 THE PASSAIC ROLLIN゙G MIIL COMPANY.

AVERAGE ULTIMATE STRENGTHS OF MATERIALS

Lbs. per Square Inch.		(Continued).	
MATERIAL.	Compression.	Tension.	$\begin{gathered} \text { Modulus } \\ \text { of } \\ \text { of ture. } \end{gathered}$
Bluestone	13,500	1,400	2,700
Granite, average	15,000	600	1,800
" Connecticut	12,000		
" New Hampshire	15,000		1,500
"، Massachusetts	16,000		1,800
" New York	15,000		
Limestone, average.	7,000	1,000	1,500
" Hudson River, N. Y.	17,000		
" Ohio	12,000		1,500
Marble, average	8,000	700	
" Vermont	8,000	700	1,200
Sandstone, average	5,000	150	1,200
New Jersey	12,000		650
New York	10,000		1,700
Ohio	9,000	100	700
Slate	10,000	10,000	5,000
Bricks:			
Bricks, light red	1,000	40	
" good commo	10,000	200	600
" best hard	12,000	400	800
" Phila. pressed	6,000	200	600
Brickwork, common (lime mortar)	1,000	50	
Brickwork, good (cement and lime mortar)	1,500	100	
Brickwork, best (cement mortar).	2,000	300	
Terra Cotta.	5,000		
Cements, etc. :			
Cement, Rosendale, I month old.	1,200	200	200
" Portland, I " "	2,000	400	400
" Rosendale, I year old.	2,000	300	400
" Portland, I "	3,000	500	800
Mortar, lime, I year old	400	50	100
" lime \& Rosendale, I y. old	600	75	200
Mortar, Rosendale cement, I year old.	1,000	125	300
Mortar, Portland cement, I y. old.	2,000	250	600
Concrete, Portland, I month old	1,000	200	100
" Rosendale, I " "	500	100	50
" Portland, I year old.	2,000	400	150
" Rosendale, I	1,000	200	75

Safe strengths of Stone, Brick and Cement, $\frac{1}{10}$ to $\frac{1}{30}$ of ultimate.

THE PASSAIC ROLIING MILL COMPANY. 299

WEIGHTS OF VARIOUS SUBSTANCES.

NAME OF SUBSTANCE.	Average Weight per cubic foot, lbs.
Alcohol, commercial	52
Aluminum	166
Antimony, cast	418
Apple	47
Ash, American, perfectly dry	38
" Canadian, " "	38
Asphalt, pavement composition	130
" ${ }^{\text {cefined }}$ Trinidad, natural state	93 80
Basalt .	181
Beech	48
Birch	43
Bismuth, cast.	614
Bluestone	160
Boxwood, perfectly dry.	62
Brass	523
Brick, best pressed.	135 to 150
" common hard	110 " 125
" fire	140 " 150
" soft, inferior	100
Brickwork, pressed brick	112 to 140
" ordinary	110 " 112
Bronze	552
Calcite, transparent.	170
Cedar	39 to 41
Cement, Louisville.	50
" Portland	80 to 100
" Rosendale	56 " 60
Chalk	156
Charcoal .	15 to 30
Cherry, perfectly dry	42
Chestnut, "	41
Clay, potters', dry	119
" dry, loose........	63 52 to 56
Coal, anthracite, broken	52 to 56
" "" moderately shaken.	56 " 60
" " solid	93
" " heaped bushel, loose	(77 to 83)
" bituminous, solid........	84
	54
" " heaped bushel, loose	(74) 30 to 50
Coke, of good coal, loose Concrete	120 " 140
Copper, cast	552

300 THE PASSAIC ROLLING MILL COMPANY.	
WEIGHTS OF VARIOUS SUBSTANCES	(Continued).
NAME OF SUBSTANCE.	Average Weight per cubic foot, lbs.
Cork	15.
Earth, dry, loose.	72 to 80
" " moderately rammed.	90 " 100
" moist, moderately packed.	90×100
" as a soft flowing mud....	104 " 112
" firm, solid.	115
Elm, Canadian, dry	47
Emery	250
Fat.	58
Feldspar	166
Fir, New England	40
Flint	162
Glass, common window.	163
" flint	186
* Millville, N. J., flooring glass.	158
Gneiss, common .	168
" in loose piles.	96
" Hornblendic.	175
Gold, cast, pure	1204
Granite	170
Gravel.	117 to 125
Greenstone, trap.	187
" " quarried, loose	107
Gunpowder	56
Gutta Percha.	61
Hemlock, perfectly dry.	26
Hickory, " "	48 to 53
Hornblende, black. .	200 " 220
Ice . . .	57
India rubber	58
Iron, cast .	450
" rolled wrought	480
" sheet.	485
Isinglass.	70
Ivory . . .	114
Lard .	59
Lead, commercial cast...	712
Lignum Vitæ, perfectly dry	83 95
Lime, quick ${ }_{\text {* }}$ \%	95 53 to 59
"6 " thoroughly shaken	75
Limestone	170
" quarried, loose	96
Loam, soft	110

THE PASSAIC ROLLING MILL COMPANY. 301

WEIGHTS OF VARIOUS SUBSTANCES (Continued).

NAME OF SUBSTANCE.	Average Weight per cubic foot, lbs.
Locust.	46
Magnesia, carbonate	150
Mahogany, Spanish, perfectly dry.	53
" Honduras,	35 499
Maple, perfectly dry	42 to 49
Marble	164
Masonry, granite or limestone	165
" " " rubble	154
" " " dry rubble.	138
" " " " rough mortar rubble	150
	125
Mercury at 32° Fah..	849
Mica	183
Mortar, hardened	90 to 100
Mud, wet, moderately pressed	110 " 130
" " fluid.	104 " 120
Naphtha	53
Nickel.	488 to 549
Oak, live, perfectly dry	59 " 69
" Canadian " white, perfectly dry	$\begin{gathered} 54 \\ 48 \text { to } 52 \end{gathered}$
" red, black, etc. ...	32 " 45
" red	52
Oils, whale, olive.	57
" of turpentine	54
Peat, dry, unpressed.	20 to 30
Petroleum	55
Pine, Canadian	453 33
" Northern	34
" pitch	65
" Southern	45 to 48
white	25 " 28
Pitch	75
Plaster of Paris	142
" " " in irregular lumps	82
" "/ " ground, loose	56
" " " well shaken..	64
Platinum	1342
Plumbago	142
Poplar (white wood)	27
Porphyry	170

302 THE PASSAIC ROLLING MILL COMPANY.	
WEIGHTS OF VARIOUS SUBSTANCES (Continued).	
NAME OF SUBSTANCE.	Average Weight per cubic foot, lbs.
Pumice Stone	56
Quartz, common, pure	165
" quarried, loose.	94
Redwood, California	23
Rosin	68
Salt, solid.	134
" coarse	65
" fine table	80
Saltpetre	130
Sand, pure quartz, dry, loose.	90 to 106
"6 perfectly wet.......	118 " 129
* sharp, of pure quartz, dry	117
Sandstone, building, dry " quarried and piled	$\begin{aligned} & 144 \text { to } 151 \\ & 86 \end{aligned}$
Shale, red or black	162
" quarried and piled	92
Silver	655
Slate	160 to 180
Snow, fresh fallen.......	5 " 12
" solid, saturated with moisture	15 " 50
Soapstone, or Steolite	170
Spruce, perfectly dry	25 to 28
Steel, structural. . . .	490
Sulphur	125
Sycamore, perfectly dry	37 to 40
Tallow	59
Tar	63
Terra-cotta	110
" " masonry work	112
Tile	110 to 120
Tin, cast	462
Traprock, quarried and piled	107
" compact......	187
Turf, or peat, unpressed	20 to 30
Walnut, black, dry	39
Water, pure or distilled, 32° Fah. " sea	62.5 64.08
Wax, bees'	60.5
Whalebone	81
Willow	34
Wines	62.3
Zinc, or Spelter.	438
Green timbers $\frac{1}{5}$ to $\frac{1}{2}$ more than dry.	

WEIGHTS OF MERCHANDISE.

Measurements and weights given are for one case, box, cask, crate, barrel, bale, or bag, etc.

MATERIAL.	Measurements.Floor SpaceOccupied.		Weights.	
			$\begin{gathered} \text { Lbs. } \\ \text { iper } \\ \text { pu.Ft. } \end{gathered}$	$\begin{gathered} \text { Lbs. } \\ \text { pqer } \\ \text { Sq. Ft. } \end{gathered}$
	Sq. Ft.	$\mathrm{Cu} . \mathrm{Ft}$.		
Cassimeres, woolen, in cases	10.5	28.0	20	52
Cement, American, in barrels	3.8	5.5	59	86
" English, in barrels	3.8	5.5	73	105
Cheese			30	
Corn, in bags	3.6	3.6	31	31
Cotton, in bales	8.1	44.2	12	64
" extra compressed, in bales.	1.25	3.13	40	100
Crockery, in casks...	13.4	42.5	14	52
" in crates	9.9	36.6	40	162
Dress goods, woolen, in cases	5.5	22.0	21	84
Flannels, heavy woolen, in cases	7.1	15.2	22	46
Flour, in barrels.	4.1	5.4	40	53
Glass, in boxes.			60	
Hay, in bales	5.0	20.0	14	57
" extra compressed, in bales	1.75	5.25	24	72
Hides, raw, in bales	6.0	30.0	23	117
Leather, sole, in bales " " in piles	12.6	8.9	16	22
Lime, in barrels	3.6	4.5	50	63
Oats, in bags	3.3	3.6	27	29
Oil, lard, in barrels	4.3	12.3	34	98
Paper, manila		37	
" newspaper	\ldots		38	
" super-calendered book			69	
" wrapping			10	
" writing.			64	
Prints, cotton, in cases	4.5	13.4	31	93
Rags, jute butts, in bales	2.8	11.0	36	143
" woolen, in bales	7.5	30.0	20	80
" white cotton, in bales	9.2	40.0	18	78
" " linen, in bales.	8.5	39.5	23	107
Sheetings, bleached cotton, in cases	4.8	11.4	30	69
Starch, in barrels.	3.0	10.5	23	83
Straw, extra compressed, in bales.	1.75	5.25	19	57
Sugar, brown, in barrels.	3.0	7.5	45	113
Tickings, cotton, in bales	3.3	8.8	37	99
Tin, in boxes	2.7	0.5	278	99
Wheat, in bags in bulk	4.2	4.2	39 41	39
Wool, Australian, in bales	5.8	26.0	15	66
" Californian, "	7.5	33.0	17	73
" South American, in bales.	7.0	34.0	29	143

WEIGHTS OF FIREPROOFING MATERIALS.

POROUS TERRA COTTA FLOOR ARCHES.

Kind of Arch.	Max. Span between Beams, Feet.	Depth of Arch, Inches.	Weight, lbs. per Sq. Ft.
"Excelsior" End Construction.	5 to 6	8	30
" " "	6 to 7	9	32
"	7 to 8	10	34
"	8 to 9	12	37
Ordinary Flat Arch	$3 \frac{1}{2}$ to 4	6	29
" " "	4 to $4^{\frac{1}{2}}$	7	33
" "	$4 \frac{1}{2}$ to 5	8	37
" "	$5 \frac{1}{2}$ to 6	9	40
" " "	6 to $6 \frac{1}{2}$	10	43
" " " .	$6 \frac{1}{2}$ to 7	12	48
Segmental Arch (Hollow Brick)	3 to 8	4	20
" " "	5 to 10	6	30
" " "	6 to 12	8	37

PARTITIONS, FURRING, CEILING, ROOFING.

	Thickness, Inches.	Weight, lbs. per Sq. Ft.
Hollow Brick Partitions	3	15
" " "	4	20
"	5	24
" " "	6	28
Porous Terra Cotta Partitions	3	14
" " " "	4	18
" " "	5	23
" " "	6	27
Hollow Brick Furring.	2	12
Porous Terra Cotta Furring.	2	8
" " " Ceiling.	2	12
" " "	3	15
"	4	20
Porous Terra Cotta Roofing.	2	12
" " " "	3	16
" " "	4	20

NOTES ON MENSURATION.

Triangle \ldots. . Area $=\frac{1}{2}$ base \times altitude.
$=\frac{1}{2}$ product of two adjacent sides \times sine of the included angle.
Parallel- $\quad\{$ Area $=$ base \times altitude. ogram.
Trapezoid
$=$ product of two adjacent sides \times sine of the included angle.
\ldots. Area $=\frac{1}{2}$ sum of parallel sides \times altitude.
Trapezium.. Area $=$ product of diagonals \times sineincluded angle.

$$
=\text { sum of areas of composing triangles. }
$$

Circle
Circumference $=3.14159 \times$ diameter .
Diameter $=0.31831 \times$ circumference.
Area $=3.14159 \times$ square of radius.
$=0.78540 \times$ square of diameter.
Length of an arc $=$ No. of degrees X diameter $\times 0.0087267$.
Area of sector $=$ length of arc \times half radius.

Circular
Arc

$m=r-\sqrt{r^{2}-\frac{c^{2}}{4}}$

$$
r=\frac{4 m^{2}+c^{2}}{8 m}
$$

$$
o=\sqrt{r^{2}-x^{2}}-(r-m)
$$

Ellipse.......Circumference (approximately) $=1.82 \times$ long diameter $+1.32 \times$ short diameter.
Area $=3.14159 \times$ product of the semi-axes.
ParabolaArea $=\frac{2}{3}$ base X altitude
Prism, right $\left\{\begin{array}{c}\text { Convex surface } \\ = \\ \text { perimeter of right section }\end{array}\right.$ or oblique. length of lateral edge.

Cylinder, right or oblique.
Pyramid and Cone.

Contents $=$ area of base \times perpendicular height.
Convex surface $=$ perimeter of right section X length.
Contents $=$ area of base \times perpendicular height.
(Convex surface (right pyramid or cone) $=\frac{1}{2} \mathrm{pe}-$ rimeter of base \times slant height.
Contents (right or oblique pyramid or cone) $=\frac{1}{3}$ area of base \times perpendicular height.

Frustum of
Pyramid
and
Cone.
Convex surface (right frustum) $=$ sum of perimeters of bases $\times \frac{1}{2}$ slant height.
Contents (right or oblique frustum) $=\frac{1}{3}$ altitude X sum of upper base, lower base and a mean proportional,
$=\frac{1}{3}$ alt. $\left(\mathrm{B}+\mathrm{B}^{\prime}+\sqrt{\mathrm{BB}^{\prime}}\right)$
Sphere....... Surface $=3.14159 \times$ square of diameter.
Contents $=0.52360 \times$ cube of diameter.
Prismoid.....A prismoid is a solid bounded by six plane surfaces, only two of which are parallel. To find the contents; add the areas of the two parallel surfaces and four times the area of a section midway between and parallel to them and multiply the sum by one sixth the altitude.

306 THE PASSAIC ROLLING MILL COMPANY.

CIRCUMFERENCES OF CIRCLES.
Advancing by Eighths.

Diameter.	0	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$
0	. 0	. 3927	. 7854	1.178	1.571	1.963	2.356	2.749
1	3.142	3.534	3.927	4.320	4.712	5.105	5.498	5.890
2	6.283	6.676	7.069	7.461	7.854	8.246	8.639	9.032
3	9.425	9.817	10.21	10.60	10.99	11.39	11.78	12.17
4	12.56	12.96	13.35	13.74	14.13	14.53	14.92	15.31
5	15.71	16.10	16.49	16.88	17.28	17.67	18.06	18.45
6	18.85	19.24	19.63	20.02	20.42	20.81	21.20	21.60
7	21.99	22.38	22.77	23.17	23.56	23.95	24.34	24.74
8	25.13	25.52	25.92	26.31	26.70	27.09	27.49	27.88
9	28.27	28.66	29.06	29.45	29.84	30.23	30.63	31.02
10	31.41	31.81	32.20	32.59	32.98	33.38	33.77	34.16
-11	34.55	34.95	35.34	35.73	36.13	36.52	36.91	37.30
12	37.70	38.09	38.48	38.87	39.27	39.66	40.05	40.45
13	40.84	41.23	41.62	42.02	42.41	42.80	43.19	43.59
14	43.98	44.37	44.76	45.16	45.55	45.94	46.34	46.73
15	47.12	47.51	47.91	48.30	48.69	49.08	49.48	49.87
16	50.26	50.66	51.05	51.44	51.83	52.23	52.62	53.01
17	53.40	53.80	54.19	54.58	54.97	55.37	55.76	56.15
18	56.55	56.94	57.33	57.72	58.12	58.51	58.90	59.29
19	59.69	60.08	60.47	60.87	61.26	61.65	62.04	62.43
20	62.83	63.22	63.61	64.01	64.40	64.79	65.19	65.58
21	65.97	66.36	66.76	67.15	67.54	67.93	68.33	68.72
22	69.11	69.50	69.90	70.29	70.68	71.08	71.47	71.86
23	72.25	72.65	73.04	73.43	73.82	74.22	74.61	75.00
24	75.40	75.79	76.18	76.57	76.97	77.36	77.75	78.14
25	78.54	78.93	79.32	79.71	80.11	80.50	80.89	81.29
26	81.68	82.07	82.46	82.86	83.25	83.64	84.03	84.43
27	84.82	85.21	85.60	86.00	86.39	86.78	87.18	87.57
28	87.96	83.35	88.75	89.14	89.53	89.93	90.32	90.71
29	91.10	91.50	91.89	92.28	92.67	93.07	93.46	93.85
30	94.24	94.64	95.03	95.42	95.82	96.21	96.60	96.99
31	97.39	97.78	98.17	98.57	98.96	99.35	99.75	100.14
32	100.53	100.92	101.32	101.71	102.10	102.49	102.89	103.28
33	103.67	104.07	104.46	104.85	105.24	105.64	106.03	106.42
34	106.81	107.21	107.60	107.99	108.39	108.78	109.17	109.56
35	109.96	110.35	110.74	111.13	111.53	111.92	112.31	112.71
36	113.10	113.49	113.88	114.28	114.67	115.06	115.45	115.85
37	116.24	116.63	117.02	117.42	117.81	118.20	118.60	118.99
33	119.38	119.77	120.17	120.56	120.95	121.34	121.74	122.13
39	122.52	122.92	123.31	123.70	124.09	124.49	124.88	125.27
40	125.66	126.06	126.45	126.84	127.24	127.63	128.02	128.41
41	128.81	129.20	129.59	129.98	130.38	130.77	131.16	131.55
42	131.95	132.34	132.73	133.13	133.52	133.91	134.30	134.70
43	135.09	135.48	135.87	136.27	136.66	137.05	137.45	137.84
44	138.23	138.62	139.02	139.41	139.80	140.19	140.59	140.98
45	141.37	141.76	142.16	142.55	142.94	143.34	143.73	144.12
46	144.51	144.91	145.30	145.69	146.08	146.48	146.87	147.26
47	147.66	148.05	148.44	148.83	149.23	149.62	150.01	150.40
48	150.80	151.19	151.58	151.97	152.37	152.76	153.15	153.55
49	153.94	154.33	154.72	155.12	155.51	155.90	156.29	156.69

THE PASSAIC ROLLING MILL COMPAN゙・ Uび

CIRCUMFERENCES OF CIRCLES
Advancing by Eighths．

Diam． eter．	0	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	3	$\stackrel{7}{8}$
50	157.08	157.47	157.87	158.26	158.65	159.04	159.44	159.83
51	160.22	160.61	161.01	161.40	161.79	162.19	162.58	162.97
52	163.36	163.76	164.15	164.54	164.93	165.33	165．72	166.11
53	166.50	166.90	167.29	167.68	168.08	168.47	168.86	169.25
54	169.65	170.04	170.43	170.82	171.22	171.61	172.00	172.40
55	172.79	173.18	173.57	173.97	174.36	174.75	175.14	175.54
56	175.93	176.32	176.72	177.11	177.50	177.89	178.29	178.68
57	179.07	179.46	179.86	180.25	180.64	181.03	181.43	181.82
58	182.21	182.61	183.00	183.39	183.78	184.18	184．57	184.96
59	185.85	185.75	186.14	186.53	186.93	187.32	187.71	188.10
60	188.50	188.89	189.28	189.67	190.07	190.46	190.85	191.24
61	191.64	192.03	192.42	192.82	193.21	193.60	103.99	194.39
62	194.78	195.17	195.56	195.96	196.35	196.74	197．11	197.53
63	197.92	198.31	198.71	199.10	199.19	199.88	200.28	200.67
64	201.06	201.46	201.85	202.24	202.63	203.08	203.42	203.81
65	204.20	204.60	204.99	205.38	205.77	206.17	206.56	206.95
66	207.35	207.74	208.13	208．52	208.92	209.31	209.70	210.09
67	210.49	210.88	211.27	211.67	212.06	212.45	212.84	213.24
68	213.63	214.02	214.41	214.81	215.20	215.59	215.98	216.38
69	216.77	217.16	217.56	217.95	218.34	218.73	219.13	219.52
70	219.91	220.30	220.70	221.09	221.48	221.88	222.27	222.65
71	223.05	223.45	223.84	224.23	224.62	225.02	225.41	225.80
72	226.20	226.59	226.98	227.37	227.77	228.16	228.55	228.94
73	229.34	239.73	230.12	230.51	230.91	231.30	231.69	232.09
74	232.48	232.87	233.26	233.66	234.05	234.44	234.83	235.23
75	235.62	236.01	236.41	236.80	237.19	237.58	237.98	$\because 38.37$
76	238.76	239.15	239.55	239.94	240.33	240.73	241.12	241.51
77	241.90	242.30	242.69	243.08	243.47	243.87	244.26	244.65
78	245.04	245.44	245.83	246.22	246.62	247.01	247.40	247.79
79	248.19	24.8 .58	248.97	249.36	249.76	250.15	250.54	250.94
80	251.33	251.72	252.11	252.51	252.90	253.29	253.68	254.08
81	254.47	254.86	255.25	255.65	256.04	256.43	256.83	257.22
82	257.61	258.00	258.40	258.79	259.18	259.57	259.97	260.36
83	260.75	261.15	261.54	261.93	262.32	262.72	263.11	263.50
84	263.89	264．29	204.68	265.07	265.47	265.86	266.25	266.64
85	267.04	267.43	267.82	268.22	268.61	269.00	269.39	269.78
86	270.18	270.57	270.96	271.36	271.75	272.14	272.53	272.93
87	273.32	273.71	274.10	274.50	274.89	275.28	275.68	276.07
88	276.46	276.85	277.25	277.64	278.03	278.42	278.82	279.21
89	279.60	279.99	280.39	280.78	281.17	281.57	231.96	282.35
90	282.74	283.14	283.53	283.92	284.31	284.71	285.10	285.49
91	285.89	286.28	286.67	287.06	287.46	287.85	288.24	288.63
92	289.03	289.42	289.81	290.21	290.60	290.99	291.38	291.78
93	292.17	292.56	292.95	293.35	293.74	294.13	294.52	294.92
94	295.31	295.70	296.10	296.49	296.88	297.27	297.67	298.06
95	298.45	298.84	299.24	299.63	300.02	300.42	300.81	301.20
96	301.59	301.99	302.38	302.77	303.16	303.56	303.95	304.34
97	304.73	305.13	305.52	305.91	306.31	306.70	307.09	307.48
98	307.88	308.27	308.66	309.05	309.45	309.84	310.33	310.63
99	311.02	311.41	311.80	312.20	312.59	312.98	313.37	313.77

308 THE PASSAIC ROLLING MILL COMPANY.

AREAS OF CIRCLES.

Advancing by Eighths.

Diam. eter.	0	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$
0	0	. 0122	. 0491	. 1104	. 1963	. 3068	. 4418	. 6013
1	. 7854	. 9940	1.227	1.485	1.767	2.074	2.405	2.761
2	3.1416	3.546	3.976	4.430	4.908	5.411	5.939	6.492
3	7.068	7.670	8.296	8.946	9.621	10.32	11.04	11.79
4	12.56	13.36	14.18	15.03	15.90	16.80	17.72	18.66
5	19.63	20.63	21.65	22.69	23.76	24.85	25.96	27.10
6	28.27	29.46	30.68	31.92	33.18	34.47	35.78	37.12
7	38.48	39.87	41.28	42.72	44.18	45.66	47.17	48.70
8	50.26	51.85	53.45	55.09	56.74	58.42	60.13	61.86
9	63.61	65.39	67.20	69.03	70.88	72.76	74.66	76.59
10	78.54	80.51	82.51	84.54	86.59	88.66	90.76	92.88
11	95.03	97.20	99.40	101.6	103.9	106.1	108.4	110.7
12	113.1	115.5	117.9	120.3	122.7	125.2	127.7	130.2
13	132.7	135.3	137.9	140.5	143.1	145.8	148.5	151.2
14	153.9	156.7	159.5	162.3	165.1	168.0	170.9	173.8
15	176.7	179.7	182.7	185.7	188.7	191.7	194.8	197.9
16	201.1	204.2	207.4	210.6	213.8	217.1	220.3	223.6
17	227.0	230.3	233.7	237.1	240.5	244.0	247.4	250.9
18	254.5	258.0	261.6	265.2	268.8	272.4	276.1	279.8
19	283.5	287.3	291.0	294.8	298.6	302.5	306.3	310.2
20	314.2	318.1	322.1	326.0	330.1	334.1	338.2	342.8
21	346.4	350.5	354.7	358.8	363.0	367.3	371.5	375.8
22	380.1	384.5	388.8	393.2	397.6	402.0	406.5	411.0
23	415.5	420.0	424.6	429.1	433.7	438.4	443.0	447.7
24	452.4	457.1	461.9	466.6	471.4	476.3	481.1	486.0
25	490.9	495.8	500.7	505.7	510.7	515.7	520.8	525.8
26	530.9	536.0	541.2	546.3	551.6	556.8	562.0	567.3
27	572.6	577.9	583.2	588.6	594.0	599.4	604.8	610.3
28	615.7	621.3	626.8	632.4	637.9	643.5	649.2	654.8
29	660.5	666.2	672.0	677.7	683.5	689.3	695.1	701.0
30	706.9	712.8	718.7	724.6	730.6	736.6	742.6	748.7
31	754.8	760.9	767.0	773.1	779.3	785.5	791.7	798.0
32	804.3	810.5	816.9	823.2	829.6	836.0	842.4	848.8
33	855.3	861.8	868.3	874.9	881.4	888.0	894.6	901.3
34	907.9	914.6	921.3	928.1	934.8	941.6	948.4	955.2
35	962.1	969.0	975.9	982.8	989.8	996.8	1003.8	1010.8
36	1017.9	1025.0	1032.1	1089.2	1046.3	1053.5	1060.7	1068.0
37	1075.2	1082.5	1089.8	1097.1	1104.5	1111.8	1119.2	1126.7
38	1134.1	1141.6	1149.1	1156.6	1164.2	1171.7	1179.3	1186.9
39	1194.6	1202.3	1210.0	1217.7	1225.4	1233.2	1241.0	1248.8
40	1256.6	1264.5	1272.4	1280.3	1288.2	1296.2	1304.2	1312.2
41	1320.3	1328.3	1336.4	1344.5	1352.7	1360.8	1369.0	1377.2
42	1385.4	1393.7	1402.0	1410.3	1418.6	1427.0	1435.4	1443.8
43	1452.2	1460.7	1469.1	1477.6	1486.2	1494.7	1503.3	1511.9
44	1520.5	1529.2	1537.9	1546.6	1555.3	1564.0	1572.8	1581.6
45	1590.4	1599.3	1608.2	1617.0	1626.0	1634.9	1643.9	1652.9
46	1661.9	1670.9	1680.0	1689.1	1698.2	1707.4	1716.5	1725.7
47	1734.9	1744.2	1753.5	1762.7	1772.1	1781.4	1790.8	1800.1
48	1809.6	1819.0	1828.5	1837.9	1847.5	1857.0	1866.5	1876.1
49	1885.7	1895.4	1905.0	1914.7	1924.4	1934.2	1943.9	1953.7

THE PASSAIC ROLLING MILL COMPANY. 309

AREAS OF CIRCLES (continued).

Advancing by Eighths.

Diameter.	0	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{2}$	$\frac{5}{8}$	$\frac{3}{4}$	$\frac{7}{8}$
50	1963.5	1973.3	1983.2	1993.1	2003.0	2012.9	2022.8	2032.8
51	2042.8	2052.8	2062.9	2073.0	2083.1	2093.2	2103.3	2113.5
52	2123.7	2133.9	2144.2	2154.5	2164.8	2175.1	2185.4	2195.8
53	2206.2	2216.6	2227.0	2237.5	2248.0	2258.5	2269.1	2279.6
54	2290.2	2300.8	2311.5	2322.1	2332.8	2343.5	2354.3	2365.0
55	2375.8	2386.6	2397.5	2408.3	2419.2	2430.1	2441.1	2452.0
56	2463.0	2474.0	2485.0	2496.1	2507.2	2518.3	2529.4	2540.6
57	2551.8	2563.0	2574.2	2585.4	2596.7	2608.0	2619.4	2630.7
58	2642.1	2653.5	2664.9	2676.4	2687.8	2699.3	2710.9	2722.4
59	2734.0	2745.6	2757.2	2768.8	2780.5	2792.2	2803.9	2815.7
60	2827.4	2839.2	2851.0	2862.9	2874.8	2886.6	2898.6	2910.5
61	2922.5	2934.5	2946.5	2958.5	2970.6	2982.7	2994.8	3006.9
62	3019.1	3031.3	3043.5	3055.7	3068.0	3080.3	3092.6	3104.9
63	3117.2	3129.6	3142.0	3154.5	3166.9	3179.4	3191.9	3204.4
64	3217.0	3229.6	3242.2	3254.8	3267.5	3280.1	3292.8	3305.6
65	3318.3	3331.1	3343.9	3356.7	3369.6	3382.4	3395.3	3408.2
66	3421.2	3434.3	3447.2	3460.2	3473.2	3486.3	3499.4	3512.5
67	3525.7	3538.8	3552.0	3565.2	3578.5	3591.7	3605.0	3618.3
68	3631.7	3645.0	3658.4	3671.8	3685.3	3698.7	3712.2	3725.7
69	3739.3	3752.8	3766.4	3780.0	3793.7	3807.3	3821.0	3834.7
70	3848.5	3862.2	3876.0	3889.8	3903.6	3917.5	3931.4	3945.3
71	3959.2	3973.1	3987.1	4001.1	4015.2	4029.2	4043.3	4057.4
72	4071.5	4085.7	4099.8	4114.0	4128.2	4142.5	4156.8	4171.1
73	4185.4	4199.7	4214.1	4228.5	4242.9	4257.4	4271.8	4286.3
74	4300.8	4315.4	4329.9	4344.5	4359.2	4373.8	4388.5	4403.1
75	4417.9	4432.6	4447.4	4462.2	4477.0	4491.8	4506.7	4521.5
76	4536.5	4551.4	4566.4	4581.3	4596.3	4611.4	4626.4	4641.5
77	4656.6	4671.8	4686.9	4702.1	4717.3	4732.5	4747.8	4763.1
78	4778.4	4793.7	4809.0	4824.4	4839.8	4855.2	4870.7	4886.2
79	4901.7	4917.2	4932.7	4948.3	4963.9	4979.5	4995.2	5010.9
80	5026.5	5042.3	5058.0	5073.8	5089.6	5105.4	5121.2	5137.1
81	5153.0	5168.9	5184.9	5200.8	5216.8	5232.8	5248.9	5264.9
82	5281.0	5297.1	5313.3	5329.4	5345.6	5361.8	5378.1	5394.3
83	5410.6	5426.9	5443.3	5459.6	5476.0	5492.4	5508.8	5525.3
84	5541.8	5558.3	5574.8	5591.4	5607.9	5624.5	5641.2	5657.8
85	5674.5	5691.2	5707.9	5724.7	5741.5	5758.3	5775.1	5791.9
86	5508.8	5825.7	5842.6	5859.6	5876.5	5893.5	5910.6	5927.6
87	5944.7	5961.8	5978.9	5996.0	6013.2	6030.4	6047.6	6064.9
88	6082.1	6099.4	6116.7	6134.1	6151.4	6168.8	6186.2	6203.7
89	6221.1	6238.6	6256.1	6273.7	6291.2	6308.8	6326.4	6344.1
90	6361.7	6379.4	63971	6414.9	6432.6	6450.4	6468.2	6486.0
91	6503.9	6521.8	6539.7	6557.6	6575.5	6593.5	6611.5	6629.6
92	6647.6	6665.7	6683.8	6701.9	6720.1	6738.2	6756.4	6774.7
93	6792.9	6811.2	6829.5	6847.8	6866.1	6881.5	6902.9	6921.3
94	6939.8	6958.2	6976.7	6995.3	7013.8	7032.4	7051.0	7069.6
95	7088.2	7106.9	7125.6	7144.3	7163.0	7181.8	7200.6	7219.4
96	7238.2	7257.1	7276.0	7294.9	7313.8	7332.8	7351.8	7370.8
97	7389.8	7408.9	7428.0	7447.1	7466.2	7485.3	7504.5	7523.7
98	7543.0	7562.2	7581.5	7600.8	7620.1	7639.5	7658.9	7678.3
99	7697.7	7717.1	7736.6	7756.1	7775.6	7795.2	7814.8	7834.4

LONG MEASURE.

Inches. Feet. Yards. Fath. Poles. Furl. Mile. Metres.

| 1. | $=.083$ | $=.02778$ | $=.0139=.005=.000126=.0000158$ | $=$ | .0254 | | |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12. | 1. | .333 | .1667 | .0606 | .00151 | .0001894 | .3048 |
| 36. | 3. | 1. | .5 | .182 | .00454 | .000568 | .9144 |
| 72. | 6. | 2. | 1. | .364 | .0091 | .001136 | 1.8288 |
| 198. | $16 \frac{1}{2}$. | $5 \frac{1}{2}$. | $2 \frac{3}{4}$. | 1. | .025 | .003125 | 5.0202 |
| 7920. | 660. | 220. | 110. | 40. | 1. | .125 | 201.168 |
| 63360. | 5280. | 1760. | 880. | 320. | 8. | 1. | 1609.344 |

A palm $=3$ inches.
A span $=9$ inches.
A hand $=4$ inches.
A cable's length $=120$ fathoms.

SQUARE MEASURE.

Inches. Feet. Yards. Perches. Roods. Acre. Metres.

| 1. | $=.00694=.000772=.0000255$ | $=.00000064$ | $=.000000159$ | $=.000645$ | | |
| ---: | ---: | :---: | :---: | :--- | :--- | :--- | :--- |
| 144. | 1. | .111 | .00367 | .0000918 | .000023 | .0929 |
| 1296. | 9. | 1. | .0331 | .000826 | .0002066 | .8362 |
| 39204. | $272 \frac{1}{4}$. | $30 \frac{1}{4}$. | 1. | .025 | .00625 | 25.294 |
| 1568160. | 10890. | 1210. | 40. | 1. | .25 | 1011.78 |
| 6272640. | 43560. | 4840. | 160. | 4. | 1. | 4047.11 |

100 square feet $=1$ square.
10 square chains $=1$ acre.
1 chain wide $=8$ acres per mile.
1 hectare $=2.471044$ acres .
1 square mile $\left\{\begin{array}{l}=27878400 \text { square feet. } \\ =3097600 \text { square yards. } \\ =640 \text { acres. }\end{array}\right.$
Acres $\times .0015625=$ square miles.
Square yards $\times .000000323=$ square miles.
Acres $\times 4840=$ square yards.
Square yards $\times .0002066=$ acres.
A section of land is 1 mile square, and contains 640 acres.
A square acre is 208.71 ft . at each side; or $220 \times 198 \mathrm{ft}$.
A square $\frac{1}{2}$-acre is 147.58 ft . at each side; or $110 \times 198 \mathrm{ft}$.
A square $\frac{1}{4}$-acre is 104.355 ft . at each side; or $55 \times 198 \mathrm{ft}$.
A circular acre is 235.504 feet in diameter.
A circular $\frac{1}{2}$-acre is 166.527 feet in diameter.
A circular $\frac{1}{4}$-acre is $\mathbf{1 1 7 . 7 5 2}$ feet in diameter.

CUBIC MEASURE.

Inches.	Feet.	Yard.	Metres.
	. 0005788	. 000002144	. 000016387
1728.	1.	. 03704	. 028317
46656.	27.	1.	. 764552

A cord of wood $=128$ cubic feet, being four feet high, four feet wide, and eight feet long.

Forty-two cubic feet $=$ a ton of shipping, British.
Forty cubic feet $=$ a ton of shipping, U.S.
A perch of masonry contains $24^{\frac{3}{4}}$ cubic feet.

A CUBIC FOOT IS EQUAL TO

1728 cubic inches.
.037037 cubic yard.
. 803564 U. S. struck bushel of 2150.42 cubic inches.
3.21426 U. S. pecks.
7.48052 U. S. liquid galls. of 231 cubic inches.
6.42851 U. S. dry galls. 29.92208 U. S. liquid quarts.
25.71405 U. S. dry quarts. 59.84416 U. S. liquid pints. 51.42809 U. S. dry pints. 239.37662 U. S. gills. 26667 flour barrel of 3 struck bushels.
23748 U . S. liquid barrel of $31 \frac{1}{2}$ galls.

MEASURES OF CAPACITY.

LIQUID MEASURE.

Gill.	Pint.	Quart.	Gallon.	Cubic Inches.	Cubic Metres.
1	. 25	. 125	. 03125 .	7.21875	. 000118
4	1.	. 5	. 125	28.875	. 000473
8	2.	1.	. 25	57.75	. 000947
32	8.	4.	1.	231.	. 003786
DRY MEASURE.					
Pint.	Quart.	Peck.	Eushel.	Cubic Inches.	Cubic Metres.
	. 50	. 0625	. 015625	33.6003	. 000551
2	1.	. 125	. 03125	67.2006	. 001101
16	8.	1.	. 25	537.605	. 008811
, 64	32.	4.	1.00	2150.42	. 035245

AVOIRDUPOIS WEIGHT.

The standard avoirdupois pound is the weight of 27.7015 cubic inches of distilled water, weighed in the air, at 39.83 degrees Fahr., barometer at thirty inches.
27.343 grains $=1$ drachm .

Drachms. Ounces. Lbs. Qrs. Cwts. Ton. Grammes. 1. $=.0625=.0039=.000139=.000035=.00000174=1.77189$ 16. 1. . 0625 . 00223 . 000558.00002828 .3502 256. 16. 1. . 0357 . 00893 . 000447453.603
7168. 448. 28. 1. . 25 . 0125 12700.884 28672. 1792. 112. 4. 1. . 05 50803.536 573440. 35840. 2240. 80. 20. 1. 1016070.72

A stone $=14$ pounds.
A quintal $=100$ pounds.
7000 grains $=$ one avoirdupois pound $=1.21528$ troy pounds.
5760 grains $=$ one troy pound $=.82285$ avoirdupois pounds.

SURVEYING MEASURE (LINEAL).

One knot or geographical mile $=6086.07$ feet $=1855.11$ metres $=1.1526$ statute miles.

One admiralty knot $=1.1515$ statute miles $=6080$ feet.

THE PASSAIC ROLLING MILL COMPANY. 315

DECIMALS OF AN INCH FOR EACH $\frac{1}{64} \mathrm{TH}$.

$\frac{1}{32} \mathrm{ds}$.	$\frac{1}{64}$ ths.	Decimal.	Fraction.	$\frac{1}{32} \mathrm{ds}$.	$\frac{1}{64}$ ths.	Decimal.	Fraction.
	1	. 015625			33	. 515625	
1	2	. 03125		17	34	. 53125	
	3	. 046875			35	. 546875	
2	4	. 0625	1-16	18	36	. 5625	9-16
	5	. 078125			37	. 578125	
3	6	. 09375		19	38	. 59375	
	7	. 109375			39	. 609375	
4	8	. 125	1-8	20	40	. 625	5-8
	9	. 140625			41	. 640625	
5	10	. 15625		21	42	. 65625	
	11	. 171875			43	. 671875	
6	12	. 1875	3-16	22	44	. 6875	11-16
	13	. 203125			45	. 703125	
7	14	. 21875		23	46	. 71875	
	15	. 234375			47	. 734375	
8	16	. 25	1-4	24	48	. 75	3-4
	17	. 265625			49	. 765625	
9	18	. 28125		25	50	. 78125	
	19	. 296875			51	. 796875	
10	20	. 3125	5-16	26	52	. 8125	13-16
	21	. 328125			53	. 828125	
11	22	. 34375		27	54	. 84375	
	23	. 359375			55	. 859375	
12	24	. 375	3-8	28	56	. 875	7-8
	25	. 390625			57	. 890625	
13	26	. 40625		29	58	. 90625	
	27	. 421875			59	. 921875	
14	28	. 4375	7-16	30	60	. 9375	15-16
	29	. 453125			61	. 953125	
15	30	. 46875		31	62	. 96875	
	31	. 484375			63	. 984375	
16	32	. 5	1-2	32	64	1.	1

DECIMALS OF A FOOT FOR EACH $\frac{1}{32}$ OF AN INCH．

	号	$\begin{aligned} & \text { تี } \\ & \text { E } \\ & \text { © } \end{aligned}$		号	$\begin{aligned} & \dot{\tilde{\pi}} \\ & \stackrel{\rightharpoonup}{U} \\ & \stackrel{0}{U} \end{aligned}$		$\underset{\substack{0 \\ \hline \multirow{2}{*}{}}}{ }$			氕	
0	0		1	8	． 1250	3	0	． 2500	4	8	.3750 .3776
	1	.0026 .0052		9	． 1276		1	.2526 .2552		9	.3776 .3802
		． 0078			． 1328			． 2578			． 3828
	2	． 0104		10	． 1354		2	． 2604		10	． 3854
		． 0130			． 1380			． 2630			． 3880
	3	． 0156		11	． 1406		3	． 2656		11	． 3906
		． 0182			． 1432			． 2682			． 3932
	4	． 0208		12	． 1458		4	． 2708		12	． 3958
		． 0234			． 1484			． 2734			． 3984
	5	． 0260		13	． 1510		5	． 2760		13	． 4010
		． 0286			． 1536			． 2786			． 4036
	6	． 0313		14	． 1563		6	． 2813		14	． 4063
		． 0339			． 1589			． 2839			． 4089
	7	． 0365		15	． 1615		7	． 2865		15	． 4115
		． 0391			． 1641			． 2891			． 4141
	8	． 0417	2	0	． 1667		8	． 2917	5	0	． 4167
		． 0443			． 1693			． 2943			． 4193
	9	． 0469		1	． 1719		9	． 2969		1	． 4219
		． 0495			． 1745			． 2995			． 4245
	10	． 0521		2	． 1771		10	． 3021		2	． 4271
		． 0547			． 1797			． 3047			． 4297
	11	． 0573		3	． 1823		11	． 3073		3	． 4323
		． 0599			． 1849			． 3099			． 4349
	12	． 0625		4	． 1875		12	． 3125		4	． 4375
		． 0651			． 1901			． 3151			． 4401
	13	． 0677		5	． 1927		13	． 3177		5	． 4427
		． 0703			． 1953			． 3203			． 4453
	14	． 0729		6	． 1979		14	． 3229		6	． 4479
		． 0755			． 2005			． 3255			． 4505
	15	． 0781		7	2031		15	． 3281		7	． 4531
1		． 0807			． 2057			． 3307			． 4557
	0	． 0833		8	． 2083	4	0	． 3333		8	． 4583
		． 0859			． 2109			． 3359			． 4609
	1	． 0885		9	． 2135		1	． 3385		9	． 4635
		． 0911			． 2161			． 3411			． 4661
	2	． 0938		10	． 2188		2	． 3438		10	． 4688
		． 0964			． 2214			． 3464			． 4714
	3	． 0990		11	． 2240		3	． 3490		11	． 4740
		． 1016			． 2266			． 3516			． 4766
	4	． 1042		12	． 2292		4	． 3542		12	． 4792
		． 1068			． 2318			． 3568			． 4818
	5	． 1094		13	． 2344		5	． 3594		13	． 4844
		． 1120			． 2370			． 3620			． 4870
	6	． 1146		14	． 2396		6	． 3646		14	． 4896
		． 1172			． 2422			． 3672			． 4922
	7	． 1198		15	． 2448		7	． 3698		15	． 4948
		． 1224			． 2474			． 3724			． 4974

DECIMALS OF A FOOT FOR EACH $\frac{1}{32}$ OF AN INCH (Continued).

$\begin{aligned} & \dot{0} \\ & \text { E゙ } \\ & \text { En } \end{aligned}$	$\stackrel{\dot{n}}{\stackrel{n}{0}}$	范		$\stackrel{\text { n }}{\substack{0 \\ \hline}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{H}} \\ & \stackrel{\rightharpoonup}{\ddot{H}} \end{aligned}$		$\stackrel{\text { ni }}{\substack{0}}$			$\stackrel{\text { nu }}{\stackrel{y}{0}}$	
6	0	. 5000	7	8	. 6250	©	0	. 7500	10	8	. 8750
	1	.5026 .5052		9	.6276 .6302		1	.7526 .7552		9	.8776 .8802
	1	. 5078			. 6328		1	. 7578		9	. 8828
	2	. 5104		10	. 6354		2	. 7604		10	. 8854
		. 5130			. 6380			. 7630			. 8880
	3	. 5156		11	. 6406		3	. 7656		11	. 8906
		. 5182			. 6432			. 7682			. 8932
	4	. 5208		12	. 6458		4	. 7708		12	. 8958
		. 5234			. 6484			. 7734			. 8984
	5	. 5260		13	. 6510		5	. 7760		13	. 9010
		. 5286			. 6536			. 7786			. 9036
	6	. 5313		14	. 6563		6	. 7813		14	. 9063
		. 5339			. 6589			. 7839			. 9089
	7	. 5365		15	. 6615		7	. 7865		15	. 9115
		. 5391			. 6641			. 7891			. 9141
	8	. 5417	8	0	. 66667		8	. 7917	11	0	. 9167
		. 5443			. 6693			. 7943			. 9193
	9	. 5469		1	. 6719		9	. 7969		1	. 9219
		. 5495			. 6745			. 7995			. 9245
	10	. 55.21		2	. 6771		10	. 8021		2	. 9271
		. 5 อ̄47			. 6797			. 8047			. 9297
	11	. 5573		3	. 6823		11	. 8073		3	. 9323
		. 5599			. 6849			. 8099			. 9349
	12	. 5625		4	. 6875		12	. 8125		4	. 9375
		. 5651			. 6901			. 8151			. 9401
	13	. 5677		5	. 6927		13	. 8177		5	. 9427
		. 5703			. 6953			. 8203			. 9453
	14	. 5729		6	. 6979		14	. 8229		6	. 9479
		. 5755			. 7005			. 8255			. 9505
	15	. 5781		7	. 7031		15	. 8281		7	. 9531
		. 5807			. 7057			. 8307			. 9557
7	0	. 5833		8	. 7083	10	0	. 8333		8	. 9583
		. 5859			. 7109			. 8359			. 9609
	1	. 5885		9	. 7135		1	. 8385		9	. 9635
		. 5911			. 7161			. 8411			. 9661
	2	. 5938		10	. 7188		2	. 8438		10	. 9688
		. 5964			. 7214			. 8464			. 9714
	3	. 5990		11	. 7240		3	. 8490		11	. 9740
		. 6016			. 7266			. 8516			. 9766
	4	. 6042		12	. 7292		4	. 8542		12	. 9792
		. 6068			. 7318			. 8568			. 9818
	5	. 6094		13	. 7344		5	. 8594		13	. 9844
		. 6120			. 7370			. 8620			. 9870
	6	. 6146		14	. 7396		6	. 8646		14	. 9896
		. 6172			. 7422		7	. 8672			. 9922
	7	. 6198		15	.7448 .7474		7	.8698 .8724		15	. 99948
		. 6224			. 7474			. 8724			. 9974

INDEX.

Page
Angles, areas of 68
" effect of increasing thickness of 4, 37
" lithographs of equal leg 27
" " " unequal leg 28
" " " square root 27, 28
" method of increasing sectional area of 34
" properties of 65-67
" radii of gyration for two, back to back 155-157
" rivet spacing for 49
" safe loads for 90-92
" sizes of fimishing grooves for 37
" standard connection, for I beams and channels .45-47
" weights of 69, 270
Arches, floor, illustrations of 39, 40
" " notes on 114-118
" " safe loads for 116
" " weights of 117, 304
Areas, deduction of, for rivet or bolt holes 281
" of column sections . . . (see tables of safe loads on columns).
" " Passaic shapes . (see shape in question).
" relation of weights and, for steel and iron shapes. . 294
Bars, areas of flat steel 278-280
" hexagon, dimensions of 31, 32
" half round 31, 32
" Passaic, sizes of 32
" round and square, sizes of 31, 32
" " " weights and areas of 268, 269
" weights of flat steel 271-273
Bead iron, lithographs, weights and dimensions 31
Beams, calculation of, for concentrated loading 102-106
" formulae for, loaded in various ways 107-110
" notes on strength and deflection of. 100-106
" relative strengths and deflections for, loaded in various ways 111
" unsupported sideways 72
Beam, I, box girders, notes on 95
" " " " safe loads for 96-99
" " girders, notes on 94
Beams, \mathbf{I}, areas of 56-59
" " connection angles for 45-47
" " connections of, to cast iron columns 50
" " lithographs of. 6-16
" " maximum shears for 86
" " method of increasing sectional areas of. 34
INDEX.
Page
Beams, I, properties of. 56-59
" "r rivet spacing for 48
" " safe loads for. 74-81
" " " " " unsupported sideways 72
" " separators for 44
" " sizes of, required for floor joists and girders, 120-133
"، " spacing of, for uniform loads 120-133
" " used in foundations 209-213
" " " " " safe loads on 212, 213
" " weights and dimensions of 35
Beams, wooden, safe loads on 216
"6 " maximum spans, white pine purlins. 217
$66 \quad 66$
$66 \quad 66$ " " yellow " 218
" " " " " " joists..219, 220
Bearings and foundations, notes on 207-211
Bearing plates for \mathbf{I} beams 51
Bending moment, formulae for various loadings 107-110 107-110 103
Bolts, area of, at root of thread 258
" screw threads for 258
" weights of round headed 256
" " " with square heads and nuts 257
Brass sheets, weights of 282, 283
" wire 285
Brick walls, weights of 94
Brickwork, notes on 293 51
Bridges, notes on highway and railway
Buckle plates 260, 261 260, 261
Building laws 119
Ceilings, construction of fireproof 40
" notes on 115
Channels, areas of 60-62
" lithographs of 17-21
" maximum shears for
" maximum shears for 87 87
" method of increasing sectional areas of 34
" properties of 60-62
" rivet spacing for 49
" safe loads for 82-85
" " " " unsupported sideways 72
" " " " web horizontal 146
" weights and dimensions of. 36
Cisterns, capacity of 292
Circles, areas of 308, 309
" circumferences of
" circumferences of 306, 307 306, 307
Clevises, weights and dimensions of. 266
Coefficient of strength, explanation of 53-55 53-55
" " " " for Passaic shapes (see tables of properties) 66 notes on 100,101

INDEX.

Page
Columns, areas of (see tables of safe loads for columns).
" built sections of. 42
" connection of \mathbf{I} beams to cast iron 50
" details of construction 43
" eccentric loading of 150-152
" formulae for safe strength of 149
" " " ultimate strength of 149
" notes on 148-152
". properties of. 158-166
" safe loads for angle. 167-174 204, 205
" " " " channel and plate 186-195
" " " " I beam 178-181
" " " " latticed channel. 175-177
" " " " jlate and angle 182-185
" " " Z bar 196, 198, 200, 202
" ultimate strength of cast iron 206 154
" " " " wrought iron 153
" weights of (see tables, safe loads on columns)
" $\quad \mathbf{Z}$ bar, dimensions of 197, 199, 201, 203
" timber, safe loads on 221, 222
Concentrated loading, method of calculation for. 102-106
Connection angles for \mathbf{I} beams and channels 45-47
Connections for \mathbf{I} beams to cast iron columns 50
Constructional details 38
Copper sheets, weights of
"،
wire, 282, 283
Corrugated iron, weights and dimensions of 249, 250
Crippling loads for I beams and channels 86, 87
Decimals of a foot for $3^{\frac{1}{2} 2}$ inch 316, 317 316, 317
" " an inch for $\frac{1}{64}$ th 315
Deflection coefficients, explanation of. 73
"
" for Passaic shapes (see tables of safe loads). for Passaic shapes (see tables of safe loads).
" limit for plastered ceilings 73
Deflections, comparison of, various methods of loading 111 111
Eccentric loading of columns 150-152
Eye bars, dimensions of Passaic 264
Expansion, lineal, of substances by heat 267 267
" of steel and iron 294 294
Explanatory notes on Passaic shapes 4
Fireproof construction, details of. 39, 40
Fireproofing materials, weights of 304
Flagging, weights of 292 292
Flats, areas of
Flats, areas of 278-280 278-280
" dimensions of Passaic 32
INDEX.
Page
Flats, dimensions of Passaic round edge. 31, 32
" weights of steel 271-273 271-273
Floors, firepooof arches for, illustrations of 39, 40
" live loads for 117, 118, 119
" notes on 114-118
" safe loads for fireproof arch 116
" weights of fireproof 117
Foot, decimals of a, for $\frac{1}{32}$ inch 316, 317
Foundations, cantilever 211
" design of 207-211
" I beam. 209-213
" safe loads on 207
Gauge, American wire. 283
" Birmingham wire 282
" different standards in use 284
Glass, floor and skylight 292
" window 290
Girders, explanation of tables of \mathbf{I} beams used as 120
" I beam, notes on 94
" " " box, notes on 95
" " " " safe loads for 96-99
" " " sizes of, required for floors. 120-133
" riveted, calculation of. 134-138
" " coefficients for 139
" " illustration of. 41
" " safe loads for. 140-143
Grillage, \mathbf{I} beam, for foundations 209-211
" "، ، safe loads for 212, 213
Groove iron, lithograph of 31
Hand rail
Hand rail 31 31
Half round bars, dimensions of 31, 32
Hexagon bars, dimensions of 31, 32
Inch decimals of an, for $\frac{1}{64}$ th 315
Iron, notes on 294
Iron sheets, weights of 282, 283
" wire" " " 285
Joists, I beam, for floors, sizes required 120-133
" yellow-pine, maximum spans for 219, 220
Laws, comparison of building 119
Lintels, notes on design of 145
" safe loads for cast iron 147
" " " " channel 146
" " " " stone 293
Loads for bridges, highway and railway 231, 232
" " floors 117-119
" " roofs 224, 225
Loads, suddenly applied, calculation for 144
Mensuration, notes on 305
Method of increasing sectional areas 34

INDEX.

INDEX. \quad Page
Metric conversion table. 313
Miscellaneous shapes, lithographs of 31
Moment of inertia, notes on 100
" " " of column sections (see properties of columns).
" " " "Passaic shapes. . (see properties of shapes). " " " " rectangles. 113
" " " " usual sections 112
Moment of resistance, notes on 100, 101
Nails, weights and dimensions of 288, 289
Nuts and bolt heads, weights of hexagon and square 257
" hexagon and square, dimensions of. 258
" " " " weights of 259
" pin, weights and dimensions of 265
Passaic structural shapes, explanatory notes on 4
" " "، lithographs of 6-31
Picture frame iron, lithograph of. 31
Piles, safe loads on 209
Pin nuts, weights and dimensions of 265
Pins, dimensions of standard 265
" notes on allowable strains for 251
" shearing and bearing values and maximum bending moments 252, 253
Pipe, steam, gas and water, weights and dimensions. 286
Plates, universal mill, sizes of Passaic 33
" weights of steel 274-277
Posts, timber, safe loads on 221, 222
Properties of column sections 155-166
" " Passaic shapes explanation of tables of 53-55
Purlins, white-pine, maximum spans for 217
" yellow " 218
Radius of gyration, notes on the 100, 148
" " " of columns (see tables, properties of columns). " "" Passaic shapes (see tables, properties of shapes).
Reactions, method of calculating 102
Rectangles, moment of inertia of 113
Rivet holes, deduction of area for 281
Rivets, length of, to form one head 256
" notes on allowable strains on 251
" shearing and bearing values of 254, 255
" weights of 256
Rivet spacing for angles, channels and I beams 48, 49
Rods, with loop eyes, length required for one head 263
Roofs, notes on the design of. 223-225
Roof trusses, strains in, tables of 228-230
" " types of, illustrated 226, 227
Round edge flats, dimensions of 31, 32
Rounds, areas and weights of 268, 269

INDEX.

Rounds, sizes ofPage
Safe loads, comparison of, various methods of loading 111
" " formulae for, 107-110
" "، explanation of tables of. 72, 73
" " for columns (see columns, safe loads).
" " " I beam, box girders 96-99
" " " Passaic shapes (see shape in question).
" " " riveted girders 140-143
Screw threads, U. S. standard 258
Screws, wood, dimensions of 288
Section modulus, explanation and use of 53-55, 106
" " of column sections. (see properties of columns).
" " " Passaic shapes....(see properties of shapes).
" " " usual sections 112
Separators for \mathbf{I} beams 44
Shapes made by Passaic Rolling Mill Co. 6-37
Shear, maximum for \mathbf{I} beams and channels 86, 87
Shear, notes on calculation of. 103
Sheets of iron, steel, copper and brass, weights of. 282, 283
Slate, roofing 291
Sleeve nuts, weights and dimensions of. 262
Spacing of I beams for uniform loads 120-133
Specifications for structural steel 246-248
Spikes, weights and dimensions of 288,289
Squares, areas and weights of 268, 269
" dimensions of 31, 32
Steel, notes on 294
" sheets, weights of 282, 283
" wire, 285
Stone, transverse strength of 293
Strains in bridge trusses 235-243
Strength, ultimate, of metals 296, 297228-230
" " " miscellaneous materials 297
" " " stone, brick and cement 298
" " timbers 295
Struts, safe loads for angle 167-174
Tacks, weights and dimensions of. 289
Tanks, capacity of 292
Tees, areas of 63, 64
" lithographs of equal leg 22, 23
" "، " unequal leg 24-26
" properties of 63, 64
" safe loads for 88, 89
" weights of 63, 64
Tie-rods 52, 114, 115
Timber posts, safe loads for 221, 222
Timbers, ultimate strength of 295
Trigonometrical functions 314

INDEX.
Trusses, bridge, notes on 231-233
" " strains in 235-243
" " types of. 234
" roof, notes on 223-225
" " strains in 228-230
" " types of. 226, 227
Tubes, builer, weights and dimensions of 287
" extra heavy, dimensions of 287
Turntables, Passaic standard railroad 244, 245
Upsets for round and square rods 262
Washers, weights and dimensions of 259
Weights and areas, relation of, for steel and iron shapes 294
Weights and measures 310-313
Weights of brick walls 94
" " column sections . . (see tables of safe loads for columns).
" "fireproofing materials 117
" " materials 299-302
" " merchandise 303
" " Passaic shapes (see shape in question).
" " roof coverings 224
" " sheets of iron, steel, copper and brass 282, 283
" " wire, iron, steel, copper and brass 285
Wind bracing for buildings 214, 215
" pressure on roofs 225
Wire gauges, different standards in use 284
Wire, weights of iron, steel, copper and brass 285 285
Wooden beams, safe loads for 216
" " maximum spans for 217-220
" columns, safe loads on 221, 222
Z bars, areas of 70, 71
" lithographs of 29, 30
" method of increasing sectional area of 34
" properties of 70, 71
" safe loads for 93 93
" weights of 70, 71
Z bar columns (see columns)
" " dimensions of 197, 199, 201, 203
" " properties of. 165, 166
"، ". safe loads for. 196, 198, 200, 202

Edeviztankinkle
\% Otis rlevalon Compruy "Bivay New youk.
N.U.

$$
\begin{aligned}
& \text { TA } 68 \\
& P 28 \\
& 1900
\end{aligned}
$$

[^0]: strain of $\mathrm{I} 6,000 \mathrm{lbs}$ ，per square inch

[^1]: Safe loads given include weight of Z. Maximum fiber strain, $16,000 \mathrm{lbs}$. per sq. in. Safe loads for intermediate spans can be obtained by dividing the coefficient of strength by the span, in feet.
 Loads given to the right of the zigzag line produce deflections exceeding I/360 of the span. Deflection, in iuches, under tabular loads, can be obtained by multiplying the Deflection Coefficient by the square of the span, in feet.

[^2]: Safe loads given include weight of girder.
 Weights of girders given include weight of rivet heads, but not stiffeners. Maximum fiber strain, $15,000 \mathrm{lbs}$. per square inch of net area, holes for $\frac{3 / 4}{4}$ rivets being deducted.

[^3]:
 and under.

[^4]: Loads given below the zig-zag line produce deflections liable to crack plastered ceilings. To obtain the safe load for any thickness, multiply the values given for one inch by the thickness of the beam.
 To obtain the required thickness for any load, divide by safe load given for one inch.

